【答案】分析:比較兩數(shù)(或式)大小的常用方法本題不適用,故考慮用歸納法推測大小關(guān)系,再用數(shù)學(xué)歸納法證明.
解答:解:當(dāng)n=1時,21>12,
當(dāng)n=2時,22=22,當(dāng)n=3時,23<32,
當(dāng)n=4時,24=42,當(dāng)n=5時,25>52,
猜想:當(dāng)n≥5時,2n>n2.
下面用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=5時,25>52成立.
(2)假設(shè)n=k(k∈N*,k≥5)時2k>k2,
那么2k+1=2•2k=2k+2k>k2+(1+1)k>k2+Ck+Ck1+Ckk-1=k2+2k+1=(k+1)2.
∴當(dāng)n=k+1時,2n>n2.
由(1)(2)可知,對n≥5的一切自然數(shù)2n>n2都成立.
綜上,得當(dāng)n=1或n≥5時,2n>n2;當(dāng)n=2,4時,2n=n2;當(dāng)n=3時,2n<n2.
點評:用數(shù)學(xué)歸納法證不等式時,要恰當(dāng)?shù)販惓瞿繕?biāo)和湊出歸納假設(shè),湊目標(biāo)時可適當(dāng)放縮.