分析:(Ⅰ),依題意知f(x)是以4為周期的函數(shù),f(1)+f(2)+f(3)+f(4)=0,從而可求得f(1)+f(2)+…+f(2013)的值;
(Ⅱ)依題意,g(x)=f(
x)=sinx,g(α)+g(π+β)=sinα-sinβ=2cos
•sin
,從而將所求關(guān)系式轉(zhuǎn)化為,cos
•cos
=
[g(
)+g(π+
)]即可求得其值.
解答:解:(Ⅰ)∵f(x)=sin
x,
∴f(x+4)=sin
(x+4)=sin(
x+2π)=sin
x=f(x),
∴f(x)是以4為周期的函數(shù),
∵f(1)=sin
=1,f(2)=sinπ=0,f(3)=sin
=-1,f(4)=sin2π=0,
∴f(1)+f(2)+f(3)+f(4)=0,又2013=4×503+1,
∴f(1)+f(2)+…+f(2013)=f(1)=1;
(Ⅱ)∵g(x)=f(
x)=sin[
•(
x)]=sinx,
∴g(α)+g(π+β)=sinα+sin(π+α)=sinα-sinβ=2cos
•sin
,
∴cos
•cos
=sin
•cos
=
•2cos
•sin
=
[g(
)+g(π+
)]
=
(sin
+sin
)
=
(-
+
)
=
.
點評:本題考查運用誘導公式化簡求值,考查函數(shù)的周期性,求得cos
•cos
=
[g(
)+g(π+
)]是難點,突出轉(zhuǎn)化思想與運算能力的考查,屬于難題.