【題目】下列關(guān)于簡(jiǎn)單幾何體的說(shuō)法中正確的是( )

①有兩個(gè)面互相平行,其余各面都是平行四邊形的多面體是棱柱;

②有一個(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐;

③在斜二測(cè)畫(huà)法中,與坐標(biāo)軸不平行的線段的長(zhǎng)度在直觀圖中有可能保持不變;

④有兩個(gè)底面平行且相似其余各面都是梯形的多面體是棱臺(tái);

⑤空間中到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)的集合是球面.

A. ③④⑤ B. ③⑤ C. ④⑤ D. ①②⑤

【答案】B

【解析】

根據(jù)多面體的性質(zhì)和幾何體的定義來(lái)判斷,采用舉反例的方法來(lái)以及對(duì)概念的理解進(jìn)行否定,即可得出答案.

對(duì)于①,不符合棱柱的結(jié)構(gòu)特征,若下面是一個(gè)正三棱柱,上面是一個(gè)以正三棱柱上底面為底面的斜三棱柱,如圖:,故①不正確;

對(duì)于②,棱錐有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形的幾何體,故②不正確;

對(duì)于③,長(zhǎng)寬分別為3的矩形的對(duì)角線,在直觀圖中長(zhǎng)度不變,而正方形的對(duì)角線長(zhǎng)度改變,故③正確;

對(duì)于④,不符合棱臺(tái)的結(jié)構(gòu)特征,棱臺(tái)是由平行于棱錐底面的平面截棱錐得到的,則應(yīng)保證各側(cè)棱延長(zhǎng)后相交于一點(diǎn),故④不正確;

對(duì)于⑤,在平面內(nèi)滿足到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)的集合為圓,在空間中,滿足到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)的集合為球面,故⑤正確.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

B. 向左平移至個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變

C. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

D. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=0,an+1=an+2 +1
(1)求證數(shù)列{ }是等差數(shù)列,并求出an的通項(xiàng)公式;
(2)若bn= ,求數(shù)列的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為, 傾斜角為的直線經(jīng)過(guò)橢圓的右焦點(diǎn)且與圓相切.

(1)求橢圓 的方程;

(2)若直線與圓相切于點(diǎn), 且交橢圓兩點(diǎn),射線于橢圓交于點(diǎn),設(shè)的面積與的面積分別為.

①求的最大值; ②當(dāng)取得最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】進(jìn)入冬季以來(lái),我國(guó)北方地區(qū)的霧霾天氣持續(xù)出現(xiàn),極大的影響了人們的健康和出行,我市環(huán)保局對(duì)該市2015年進(jìn)行為期一年的空氣質(zhì)量監(jiān)測(cè),得到每天的空氣質(zhì)量指數(shù),從中隨機(jī)抽取50個(gè)作為樣本進(jìn)行分析報(bào)告,樣本數(shù)據(jù)分組區(qū)間為(5,15],(15,25],(25,35],(35,45],由此得到樣本的空氣質(zhì)量指數(shù)頻率分布直方圖,如圖.

(1)求a的值;
(2)如果空氣質(zhì)量指數(shù)不超過(guò)15,就認(rèn)定空氣質(zhì)量為“特優(yōu)等級(jí)”,則從今年的監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取3天的數(shù)值,其中達(dá)到“特優(yōu)等級(jí)”的天數(shù)為X.求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 底面,底面為正方形, , 分別是的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】31屆夏季奧林匹克運(yùn)動(dòng)會(huì)于201685日至821日在巴西里約熱內(nèi)盧舉行.如表是近五屆奧運(yùn)會(huì)中國(guó)代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)(單位:枚).

30屆倫敦

29屆北京

28屆雅典

27屆悉尼

26屆亞特蘭大

中國(guó)

38

51

32

28

16

俄羅斯

24

23

27

32

26

(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運(yùn)會(huì)兩國(guó)代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過(guò)莖葉圖比較兩國(guó)代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計(jì)算出具體數(shù)值,給出結(jié)論即可);

(2)如表是近五屆奧運(yùn)會(huì)中國(guó)代表團(tuán)獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時(shí)間變化的數(shù)據(jù):

時(shí)間(屆)

26

27

28

29

30

金牌數(shù)之和(枚)

16

44

76

127

165

作出散點(diǎn)圖如圖:

由圖可以看出,金牌數(shù)之和與時(shí)間之間存在線性相關(guān)關(guān)系,請(qǐng)求出關(guān)于的線性回歸方程,并預(yù)測(cè)從第26屆到第32屆奧運(yùn)會(huì)時(shí)中國(guó)代表團(tuán)獲得的金牌數(shù)之和為多少?

附:對(duì)于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】)已知三個(gè)點(diǎn),,,圓的外接圓.

)求圓的方程.

)設(shè)直線,與圓交于,兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)請(qǐng)根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?

(參考公式: ,

參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

查看答案和解析>>

同步練習(xí)冊(cè)答案