如圖,在直三棱柱ABC=A1B1C1中,∠ACB=90°,E,F(xiàn),D分別是AA1,AC,BB1的中點(diǎn),且CD⊥C1D.
(Ⅰ)求證:CD∥平面BEF;
(Ⅱ)求證:平面BEF⊥平面A1C1D.
考點(diǎn):平面與平面垂直的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)連結(jié)AD,交BE于點(diǎn)M,連結(jié)FM,由已知得四邊形ABDE為平行四邊形,由此能證明CD∥平面BEF.
(Ⅱ)由已知得∠ACB=90°,從而A1C1⊥面BC1,進(jìn)而A1C1⊥CD,又CD⊥C1D,從而CD⊥平面A1C1D,由此能證明平面BEF⊥平面A1C1D.
解答: 證明:(Ⅰ)連結(jié)AD,交BE于點(diǎn)M,連結(jié)FM,
∵E,D分別為棱的中點(diǎn),
∴四邊形ABDE為平行四邊形,
∴點(diǎn)M為BE的中點(diǎn),而F為AC中點(diǎn),
∴FM∥CD,
∵CD不包含于面BEF,F(xiàn)M?平面BEF,
∴CD∥平面BEF.
(Ⅱ)∵三棱柱ABC-A1B1C1是直三棱柱,∠ACB=90°,
∴A1C1⊥面BC1,而CD?面BC1,
∴A1C1⊥CD,又∵CD⊥C1D,
∴CD⊥平面A1C1D.
由(1)知FM∥CD,∴FM⊥面A1C1D,
而FM?面BEF,∴平面BEF⊥平面A1C1D.
點(diǎn)評:本題考查直線與平面平行的證明,考查平面與平面垂直的證明,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知傾斜角為
π
4
的直線f經(jīng)過點(diǎn)P(1,1).
(I)寫出直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與x2+y2=4相交于A,B兩點(diǎn),求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(x+
2
3
π)+2cos2
x
2
,x∈R.
(Ⅰ)若x∈[-
π
2
,0],求f(x)的值域;
(Ⅱ)記△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,若f(B)=1,b=1,c=
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-3x2+a(6-a)x+c.
(1)當(dāng)c=19時(shí),解關(guān)于a的不等式f(1)>0;
(2)若關(guān)于x的不等式f(x)>0的解集是(-1,3),求實(shí)數(shù)a,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
ax
x+1

(1)若函數(shù)f(x)有極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)f(x)有兩個(gè)極值點(diǎn)(記為x1和x2)時(shí),求證f(x1)+f(x2)≥
x+1
x
•[f(x)-x+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)閇-2,2],且在區(qū)間[-2,0]內(nèi)遞減,求滿足:f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)M(2,0)做斜率為1的直線,交拋物線y2=4x相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin
x
2
+
3
cos
x
2
,x∈R.
(1)求函數(shù)f(x)的最小正周期,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)函數(shù)y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換可以得到函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
3x+1(x≥0)
x2(x<0)
,則f[f(3)]=
 

查看答案和解析>>

同步練習(xí)冊答案