3.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,a3=6且Sn+1=3Sn,則a1+a5等于( 。
A.12B.$\frac{164}{3}$C.55D.$\frac{170}{3}$

分析 Sn+1=3Sn,可得數(shù)列{Sn}為等比數(shù)列,公比為3.可得${S}_{n}={S}_{1}×{3}^{n-1}$.利用遞推關(guān)系即可得出.

解答 解:∵Sn+1=3Sn,∴數(shù)列{Sn}為等比數(shù)列,公比為3.
∴${S}_{n}={S}_{1}×{3}^{n-1}$.
∴a3=S3-S2=${S}_{1}({3}^{2}-3)$=6,解得S1=1=a1
∴Sn=3n-1
∴a5=S5-S4=34-33=54.
∴a1+a5=55.
故選:C.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2016年9月,第22屆魯臺(tái)經(jīng)貿(mào)洽談會(huì)在濰坊魯臺(tái)會(huì)展中心舉行,在會(huì)展期間某展銷商銷售一種商品,根據(jù)市場(chǎng)調(diào)查,每件商品售價(jià)x(元)與銷量t(萬元)之間的函數(shù)關(guān)系如圖所示,又知供貨價(jià)格與銷量呈反比,比例系數(shù)為20.(注:每件產(chǎn)品利潤=售價(jià)-供貨價(jià)格)
(1)求售價(jià)15元時(shí)的銷量及此時(shí)的供貨價(jià)格;
(2)當(dāng)銷售價(jià)格為多少時(shí)總利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{11}$=1的焦點(diǎn)坐標(biāo)為( 。
A.(±3$\sqrt{2}$,0)B.(±2,0)C.(0,±3$\sqrt{2}$)D.(0,±2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=$\frac{sinx}{x+1}$,則f′(0)等于(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.橢圓7x2+3y2=21上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式3+5x-2x2>0的解集為( 。
A.(-3,$\frac{1}{2}$)B.(-∞,-3)∪($\frac{1}{2}$,+∞)C.(-$\frac{1}{2}$,3)D.(-∞,-$\frac{1}{2}$)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若兩條直線2x-y=0與ax-2y-1=0互相垂直,則實(shí)數(shù)a的值為(  )
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系xoy中,A,B是圓x2+y2=4上的兩個(gè)動(dòng)點(diǎn),且AB=2,則線段AB中點(diǎn)M的軌跡方程為x2+y2=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案