設(shè)函數(shù),其中a為正實數(shù).
(l)若x=0是函數(shù)的極值點,討論函數(shù)的單調(diào)性;
(2)若上無最小值,且上是單調(diào)增函數(shù),求a的取值范
圍;并由此判斷曲線與曲線交點個數(shù).
(1)增區(qū)間為,減區(qū)間為;(2);0.

試題分析:(1)先求出,根據(jù)已知“是函數(shù)的極值點”,得到,解得,將其代入,求得,結(jié)合函數(shù)的定義域,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間;(2)先研究函數(shù)在區(qū)間沒有極小值的情況:,當(dāng)時,在區(qū)間上先減后增,有最小值;當(dāng)時,在區(qū)間上是單調(diào)遞增的,沒有最小值.再研究函數(shù)在區(qū)間上是單調(diào)增函數(shù):上恒成立,解得.綜合兩種情況得到的取值范圍.根據(jù)可知,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,得到在區(qū)間上的最小值是,與的取值范圍矛盾,所以兩曲線在區(qū)間上沒有交點.
試題解析:(1) 由,                     2分
的定義域為:,                                      3分
 ,函數(shù)的增區(qū)間為,減區(qū)間為.      5分
(2),   
上有最小值,
當(dāng)時,單調(diào)遞增無最小值.              7分
上是單調(diào)增函數(shù)∴上恒成立,
.                                       9分
綜上所述的取值范圍為.                     10分
此時,
,
則 h(x)在 單減,單增,               13分
極小值為. 故兩曲線沒有公共點.                  14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,為自然對數(shù)的底數(shù)).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)對任意的,恒成立,求的最小值;
(3)若對任意給定的,在上總存在兩個不同的,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)滿足,且在定義域內(nèi)恒成立,求實數(shù)b的取值范圍;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)如果,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;
(3)證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)=,=,若曲線和曲線都過點P(0,2),且在點P處有相同的切線
(Ⅰ)求,,,的值;
(Ⅱ)若時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ) 求的單調(diào)區(qū)間;
(Ⅱ) 求所有的實數(shù),使得不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(Ⅰ)證明:當(dāng);
(Ⅱ)設(shè)當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,,記的大小關(guān)系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)上單調(diào)遞減,則實數(shù)的取值范圍是       

查看答案和解析>>

同步練習(xí)冊答案