已知數(shù)列{an}:a1,a2,a3,…,an,如果數(shù)列{bn}:b1,b2,b3,…,bn滿足b1=an,bk=ak-1+ak-bk-1,其中k=2,3,…,n,則稱{bn}為{an}的“衍生數(shù)列”.若數(shù)列{an}:a1,a2,a3,a4的“衍生數(shù)列”是5,-2,7,2,則{an}為_(kāi)_______;若n為偶數(shù),且{an}的“衍生數(shù)列”是{bn},則{bn}的“衍生數(shù)列”是________.

 

2,1,4,5 {an}

【解析】由b1=an,bk=ak-1+ak-bk-1,k=2,3,…,n可得,a4=5,2=a3+a4-7,解得a3=4.又7=a2+a3-(-2),解得a2=1.由-2=a1+a2-5,解得a1=2,所以數(shù)列{an}為2,1,4,5.

由已知,b1=a1-(a1-an),b2=a1+a2-b1=a2+(a1-an),….

因?yàn)閚是偶數(shù),所以bn=an+(-1)n(a1-an)=a1.設(shè){bn}的“衍生數(shù)列”為{cn},則ci=bi+(-1)i(b1-bn)=ai+(-1)i·(a1-an)+(-1)i(b1-bn)=ai+(-1)i(a1-an)+(-1)i·(an-a1)=ai,其中i=1,2,3,…,n.則{bn}的“衍生數(shù)列”是{an}.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-3二項(xiàng)式定理(解析版) 題型:解答題

已知()n的展開(kāi)式中,前三項(xiàng)系數(shù)的絕對(duì)值依次成等差數(shù)列.

(1)證明:展開(kāi)式中沒(méi)有常數(shù)項(xiàng);

(2)求展開(kāi)式中所有的有理項(xiàng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-1分類加法與分步乘法計(jì)數(shù)原理(解析版) 題型:選擇題

某城市的街道如圖,某人要從A地前往B地,則路程最短的走法有(  )

A.8種 B.10種 C.12種 D.32種

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):1-1集合的概念與運(yùn)算(解析版) 題型:選擇題

設(shè)全集U=R,集合A=(-∞,-1)∪(1,+∞),B=[-1,+∞),則下列關(guān)系正確的是(  )

A.B⊆A B.A⊆∁UB

C.(∁UA)∪B=B D.A∩B=∅

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪考前特訓(xùn):創(chuàng)新問(wèn)題專項(xiàng)訓(xùn)練2(解析版) 題型:填空題

給出定義:若函數(shù)f(x)在D上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在D上也可導(dǎo),則稱f(x)在D上存在二階導(dǎo)函數(shù),記f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數(shù).以下四個(gè)函數(shù)在(0,)上不是凸函數(shù)的是________.

①f(x)=sim x+cos x ②f(x)=ln x-2x

③f(x)=x3+2x-1 ④f(x)=x·ex

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪考前特訓(xùn):創(chuàng)新問(wèn)題專項(xiàng)訓(xùn)練1(解析版) 題型:填空題

設(shè)實(shí)數(shù)a1,a2,a3,a4是一個(gè)等差數(shù)列,且滿足1<a1<3,a3=4.若定義bn={2an},給出下列命題:(1)b1,b2,b3,b4是一個(gè)等比數(shù)列;(2)b1<b2;(3)b2>4;(4)b4>32;(5)b2·b4=256.其中真命題的個(gè)數(shù)為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)理配套特訓(xùn):10-9離散型隨機(jī)變量均值方差和正態(tài)分布(解析版) 題型:填空題

袋中有大小、質(zhì)地均相同的4個(gè)紅球與2個(gè)白球.若從中有放回地依次取出一個(gè)球,記6次取球中取出紅球的次數(shù)為ξ,則ξ的期望E(ξ)=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):7-1空間幾何體結(jié)構(gòu)及三視圖和直觀圖(解析版) 題型:填空題

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的外接球的體積為_(kāi)_______.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):3-1任意角弧度制及任意角的三角函數(shù)(解析版) 題型:解答題

已知扇形OAB的圓心角α為120°,半徑長(zhǎng)為6,

(1)求的弧長(zhǎng);

(2)求弓形OAB的面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案