分析 (1)求出b的值,根據(jù)f(e)=2,求出a的值,從而求出f(x)的解析式即可;
(2)問題轉(zhuǎn)化為$\frac{lnx+1}{x}$≤k,設g(x)=$\frac{lnx+1}{x}$,根據(jù)函數(shù)的單調(diào)性求出g(x)的最大值,從而求出k的范圍即可;
(3)設h(x)=$\frac{xlnx}{x-1}$,求出函數(shù)的單調(diào)性,由(2)得,當k=1時,x≥lnx+1,判斷出h(x)的單調(diào)性,從而證出結(jié)論.
解答 解:(1)由題意得f(x)恒過點(1,1),∴b=1,
又∵f(e)=2=logae=1,∴a=e,
∴f(x)=lnx+1.
(2)f(x)≤kx,即lnx+1≤kx,即$\frac{lnx+1}{x}$≤k,
設g(x)=$\frac{lnx+1}{x}$,g′(x)=-$\frac{lnx}{{x}^{2}}$,令g′(x)>0,得0<x<1,
∴g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
g(x)max=g(1)=1,
∴k≥1.
(3)設h(x)=$\frac{xlnx}{x-1}$,則h′(x)=$\frac{x-1-lnx}{{(x-1)}^{2}}$,
由(2)得,當k=1時,x≥lnx+1,
所以h′(x)=$\frac{x-1-lnx}{{(x-1)}^{2}}$>0,
∴h(x)在(0,+∞)上單調(diào)遞增,
又∵x2>x1>1,∴h(x2)>h(x1),
即$\frac{{x}_{2}l{nx}_{2}}{{x}_{2}-1}$>$\frac{{x}_{1}l{nx}_{1}}{{x}_{1}-1}$,
即x2(x1-1)lnx2>x1(x2-1)lnx1,得證.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及不等式的證明,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{n}{n+1}$ | B. | $\frac{n-1}{n}$ | C. | $\frac{n+1}{n}$ | D. | $\frac{n}{n-1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{7}{25}$ | B. | $\frac{7}{25}$ | C. | $\frac{9}{25}$ | D. | $\frac{16}{25}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com