8.已知Sn為數(shù)列{an}的前n項(xiàng)和滿(mǎn)足an>0,${a_n}^2+2{a_n}=4{S_n}+3$.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和.

分析 (I)利用等差數(shù)列的通項(xiàng)公式與遞推關(guān)系即可得出.
(II)利用“裂項(xiàng)求和”方法即可得出.

解答 解:(Ⅰ)當(dāng)n=1時(shí),${a_1}^2+2{a_1}=4{S_1}+3=4{a_1}+3$,∵an>0,∴a1=3,
當(dāng)n≥2時(shí),${a_n}^2+2{a_n}-{a_{n-1}}^2-2{a_{n-1}}=4{S_n}+3-4{S_{n-1}}-3$,
即(an+an-1)(an-an-1)=2(an+an-1),
∵an>0,∴an-an-1=2,因此數(shù)列{an}是首項(xiàng)為3,公差為2的等差數(shù)列,
∴an=2n+1.
(II)解:${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
∴數(shù)列{bn}的前n項(xiàng)和=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$=$\frac{n}{6n+9}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與遞推關(guān)系、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖是一個(gè)獎(jiǎng)杯三視圖,試根據(jù)獎(jiǎng)杯三視圖計(jì)算它的表面積與體積.(尺寸單位:cm,取$π≈3,\sqrt{34}≈6$,結(jié)果精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,滿(mǎn)足cosA=$\frac{3}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(1)求△ABC的面積;   
(2)若b-c=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某次志愿活動(dòng),需要從6名同學(xué)中選出4人負(fù)責(zé)A、B、C、D四項(xiàng)工作(每人負(fù)責(zé)一項(xiàng)),若甲、乙均不能負(fù)責(zé)D項(xiàng)工作,則不同的選擇方案有( 。
A.240種B.144種C.96種D.300種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列命題中:
①若命題p為真命題,命題q為假命題,則命題“p∧q“為真命題;
②“$sinα=\frac{1}{2}$”是“$α=\frac{π}{6}$”的必要不充分條件;
③命題“?x∈R,2x>0”的否定是“?x0∈R,${2^{x_0}}≤0$”
正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知t>0,函數(shù)f(x)=$\left\{\begin{array}{l}x{(x-t)}^{2},x≤t\\ \frac{1}{4}x,x>t\end{array}\right.$,若函數(shù)g(x)=f(f(x)-1)恰有6個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是(3,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=$\sqrt{2}$,AA1=3,D是BC的中點(diǎn),點(diǎn)E在棱BB1
(1)證明:AD⊥C1E
(2)當(dāng)BE=1時(shí),求三棱錐C1-A1B1E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.方程$\left\{{\begin{array}{l}x=-\frac{{2\sqrt{5}}}{5}t+2cosθ\\ y=\frac{{\sqrt{5}}}{5}t+\sqrt{3}sinθ\end{array}}$
(1)當(dāng)t=0時(shí),θ為參數(shù),此時(shí)方程表示曲線(xiàn)C1請(qǐng)把C1的參數(shù)方程化為普通方程;
(2)當(dāng)θ=$\frac{π}{3}$時(shí),t為參數(shù),此時(shí)方程表示曲線(xiàn)C2請(qǐng)把C2的參數(shù)方程化為普通方程;
(3)在(1)(2)的條件下,若P為曲線(xiàn)C1上的動(dòng)點(diǎn),求點(diǎn)P到曲線(xiàn)C2距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.$\root{3}{2+\sqrt{3}}$•$\root{6}{7-4\sqrt{3}}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案