過點Q(-2,)作圓O:x2+y2=r2(r>0)的切線,切點為D,|QD|=4.

(1)r的值.

(2)P是圓O上位于第一象限內的任意一點,過點P作圓O的切線l,lx軸于點A,y軸于點B,=+,||的最小值(O為坐標原點).

 

(1)3 (2)6

【解析】(1)O:x2+y2=r2(r>0)的圓心為O(0,0),于是|QO|2=(-2)2+()2=25,

由題設知,QDO是以D為直角頂點的直角三角形,

故有r=|OD|===3.

(2)設直線l的方程為+=1(a>0,b>0),

bx+ay-ab=0,A(a,0),B(0,b),

=(a,b),||=.

∵直線l與圓O相切,

=3a2b2=9(a2+b2)()2,

a2+b236,||6,

當且僅當a=b=3時取到“=.

||取得最小值為6.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十六第八章第七節(jié)練習卷(解析版) 題型:解答題

如圖,直線l:y=x+b與拋物線C:x2=4y相切于點A.

(1)求實數(shù)b的值.

(2)求以點A為圓心,且與拋物線C的準線相切的圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十二第八章第三節(jié)練習卷(解析版) 題型:解答題

如圖,在平面直角坐標系xOy,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M,N均在直線x=5.圓弧C1的圓心是坐標原點O,半徑為13;圓弧C2過點A(29,0).

(1)求圓弧C2的方程.

(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:解答題

已知橢圓E:+=1(a>b>0)的離心率e=,a2b2的等差中項為.

(1)求橢圓E的方程.

(2)A,B是橢圓E上的兩點,線段AB的垂直平分線與x軸相交于點P(t,0),求實數(shù)t的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:選擇題

若已知點Q(4,0)和拋物線y=x2+2上一動點P(x,y),y+|PQ|最小值為(  )

(A)2+2  (B)11   (C)1+2   (D)6

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:填空題

夾在兩條平行線l1:3x-4y=0l2:3x-4y-20=0之間的圓的最大面積為    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:選擇題

已知圓C的圓心是直線x-y+1=0x軸的交點,且圓C與直線x+y+3=0相切,則圓C的方程為(  )

(A)(x+1)2+y2=2 (B)(x-1)2+y2=2

(C)(x+1)2+y2=4 (D)(x-1)2+y2=4

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十一第八章第二節(jié)練習卷(解析版) 題型:解答題

如圖,函數(shù)f(x)=x+的定義域為(0,+).設點P是函數(shù)圖象上任一點,過點P分別作直線y=xy軸的垂線,垂足分別為M,N.

(1)證明:|PM|·|PN|為定值.

(2)O為坐標原點,求四邊形OMPN面積的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十四第三章第八節(jié)練習卷(解析版) 題型:選擇題

線段AB外有一點C,ABC=60°,AB=200km,汽車以80km/h的速度由AB行駛,同時摩托車以50km/h的速度由BC行駛,則運動開始幾小時后,兩車的距離最小(  )

(A)   (B)1   (C)   (D)2

 

查看答案和解析>>

同步練習冊答案