【題目】某商店為迎接端午節(jié),推出兩款粽子:花生粽和肉粽.為調(diào)查這兩款粽子的受歡迎程度,店員連續(xù)10天記錄了這兩種粽子的銷售量,如下表表示(其中銷售單位:個(gè))

天數(shù)

銷售量

天數(shù)

1

2

3

4

5

6

7

8

9

10

11

花生粽

103

93

98

93

106

86

87

94

91

99

100

肉粽

88

97

98

95

101

98

103

106

103

111

100

1)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖:

2)統(tǒng)計(jì)學(xué)知識(shí),請(qǐng)?jiān)u述哪款粽子更受歡迎;

3)求肉粽銷售量y關(guān)于天數(shù)t的線性回歸方程,并預(yù)估第15天肉粽的銷售量(回歸方程系數(shù)精確到0.1

參考數(shù)據(jù):,參考公式:

【答案】(1)見解析;(2)肉粽更受歡迎;(3113個(gè)

【解析】

1)根據(jù)表格數(shù)據(jù)填寫莖葉圖;(2)由兩種粽子的銷量情況判斷受歡迎款粽子;(3)分別根據(jù)公式求出,,,從而確定線性回歸方程,再將代入回歸方程,即得銷量.

1)根據(jù)所給數(shù)據(jù)可繪制如下莖葉圖:

2)由莖葉圖知,肉粽的銷售量均值高于花生粽,兩種銷售量波動(dòng)情況相當(dāng),所以認(rèn)為肉粽更受歡迎;

3.

.所以,

從而線性回歸方程為

所以預(yù)估第15天肉粽的銷售量為個(gè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)),曲線C2的參數(shù)方程為(α為參數(shù)),以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線C1C2的極坐標(biāo)方程;

2)直線l的極坐標(biāo)方程為,直線l與曲線C1C2分別交于不同于原點(diǎn)的A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來(lái)了便利.已知某共享單車的收費(fèi)標(biāo)準(zhǔn)是:每車使用不超過(guò)1小時(shí)(包含1小時(shí))是免費(fèi)的,超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)1元(不足1小時(shí)的部分按1小時(shí)計(jì)算,例如:騎行2.5小時(shí)收費(fèi)2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設(shè)甲、乙不超過(guò)1小時(shí)還車的概率分別為1小時(shí)以上且不超過(guò)2小時(shí)還車的概率分別為兩人用車時(shí)間都不會(huì)超過(guò)3小時(shí).

(Ⅰ)求甲乙兩人所付的車費(fèi)相同的概率;

)設(shè)甲乙兩人所付的車費(fèi)之和為隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]

(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬(wàn)元)

1

2

3

4

5

銷售收益 (單位:萬(wàn)元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直線坐標(biāo)系中,定義為兩點(diǎn)切比雪夫距離,又設(shè)點(diǎn)P上任意一點(diǎn)Q,的最小值為點(diǎn)P到直線切比雪夫距離記作給出下列四個(gè)命題:

①對(duì)任意三點(diǎn)A、BC,都有

②已知點(diǎn)P(3,1)和直線

③到定點(diǎn)M的距離和到M切比雪夫距離相等點(diǎn)的軌跡是正方形;

④定點(diǎn)動(dòng)點(diǎn)滿足則點(diǎn)P的軌跡與直線(為常數(shù))有且僅有2個(gè)公共點(diǎn)。

其中真命題的個(gè)數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

點(diǎn)P是曲線C1:(x-2)2+y2=4上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,以極點(diǎn)O為中心,將點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)Q,設(shè)點(diǎn)Q的軌跡為曲線C2

(Ⅰ)求曲線C1,C2的極坐標(biāo)方程;

(Ⅱ)射線(ρ>0)與曲線C1,C2分別交于A,B兩點(diǎn),設(shè)定點(diǎn)M(2,0),求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知直線l過(guò)點(diǎn),它的一個(gè)方向向量為

①求直線l的方程;

②一組直線,,,,都與直線l平行,它們到直線l的距離依次為d,,,),且直線恰好經(jīng)過(guò)原點(diǎn),試用n表示d的關(guān)系式,并求出直線的方程(用n、i表示);

2)在坐標(biāo)平面上,是否存在一個(gè)含有無(wú)窮多條直線,,,的直線簇,使它同時(shí)滿足以下三個(gè)條件:①點(diǎn);②,其中是直線的斜率,分別為直線x軸和y軸上的截距;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方體的棱長(zhǎng)為1.

正方體中哪些棱所在的直線與直線是異面直線?

若M,N分別是 ,的中點(diǎn),求異面直線MN與BC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿分均為60分.

整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組: , , , , , ,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:

定義學(xué)生對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”如下:

分?jǐn)?shù)

滿意度指數(shù)

(Ⅰ)在抽樣的100人中,求對(duì)餐廳評(píng)價(jià)“滿意度指數(shù)”為0的人數(shù);

(Ⅱ)從該校在 兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”比對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”高的概率;

(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案