在(0,2π)內(nèi),使sinx>cosx成立的x值取值范圍是(    )

A.(,)∪(π,)              B.(,π)

C.(,)                               D.(,π)∪(,

解析:用“五點(diǎn)法”作出y=sinx,y=cosx(0≤x≤2π)的簡(jiǎn)圖.

由圖象可知(1)當(dāng)x=或x=時(shí),sinx=cosx.

(2)當(dāng)<x<時(shí)sinx>cosx.

(3)當(dāng)0≤x<<x≤2π時(shí),sinx<cosx.

答案:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=2x2-(a-2)x-2a2-a,若在區(qū)間[0,1]內(nèi)至少存在一個(gè)實(shí)數(shù)b,使f(b)>0,則實(shí)數(shù)a的取值范圍是
(-2,1)
(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•濰坊二模)已知函數(shù)f(x)=-2sinx•cosx+2cos2x+1.
(1)設(shè)方程f(x)-1=0在(0,π)內(nèi)有兩個(gè)零點(diǎn)x1,x2,求x1+x2的值;
(2)若把函數(shù)y=f(x)的圖象向左平移m(m>0)個(gè)單位使所得函數(shù)的圖象關(guān)于點(diǎn)(0,2)對(duì)稱(chēng),求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+2)+
ax
,g(x)=blnx
,
(Ⅰ) 若b>0,x2>x1>e,求證:x2g(x1)>x1g(x2);
(Ⅱ)討論函數(shù)f(x)在(0,+∞)內(nèi)的單調(diào)性;
(Ⅲ)是否存在正實(shí)數(shù)a,b,使方程f(x)=g(x)有兩個(gè)不相等的實(shí)數(shù)根?若存在,求出正實(shí)數(shù)a,b應(yīng)滿足的條件;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧二模)已知函數(shù)f(x)=-2sinxcosx+2cos2x+1
(1)設(shè)方程f(x)-1=0在(0,π)內(nèi)有兩個(gè)零點(diǎn)x1,x2,求x1+x2的值;
(2)若把函數(shù)y=f(x)的圖象向左移動(dòng)m(m>0)個(gè)單位,再向下平移2個(gè)單位,使所得函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng),求m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案