質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),記首次抽檢到合格奶粉時已經(jīng)檢驗出奶粉存在質(zhì)量問題的廠家個數(shù)為隨即變量ξ,求ξ的分布列及數(shù)學(xué)期望.

解:(I)任意選取3個廠家進(jìn)行抽檢,至少有2個廠家的奶粉檢驗合格有兩種情形;
一是選取抽檢的3個廠家中,恰有2個廠家的奶粉合格,此時的概率為
P1=
二是選取抽檢的3個廠家的奶粉均合格,此時的概率為P2=;
故所求的概率為P=P1+P2=
(Ⅱ)由題意,隨即變量ξ的取值為0,1,2.
∴P(ξ=0)=,
P(ξ=1)=,
P(ξ=2)=,
∴ξ的分布列為
ξ012
P
∴ξ的數(shù)學(xué)期望Eξ=0×+1×+2×=
分析:(I)根據(jù)隨意任意選取3個廠家進(jìn)行抽檢,至少有2個廠家的奶粉檢驗合格有兩種情形;根據(jù)等可能事件的概率公式進(jìn)行計算,最后求出它們的和得到結(jié)果.
(II)由題意得到隨即變量ξ的取值為0,1,2.根據(jù)變量對應(yīng)的事件求出概率,寫出分布列和期望.
點(diǎn)評:本題主要考查等可能事件的概率,相互獨(dú)立事件、互斥事件的概率,離散型隨機(jī)變量的分布列及數(shù)學(xué)期望等基礎(chǔ)知識,同時考查運(yùn)用概率知識分析問題和解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文)質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),求恰好在第二次抽檢到合格奶粉的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都二模)質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),記首次抽檢到合格奶粉時已經(jīng)檢驗出奶粉存在質(zhì)量問題的廠家個數(shù)為隨即變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文)質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),求恰好在第二次抽檢到合格奶粉的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成都二模 題型:解答題

質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),記首次抽檢到合格奶粉時已經(jīng)檢驗出奶粉存在質(zhì)量問題的廠家個數(shù)為隨即變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西柳州市高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

(文)質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
(I)從中任意選取3個廠家的奶粉進(jìn)行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
(Ⅱ)每次從中任意抽取一個廠家的奶粉進(jìn)行檢驗(抽檢不重復(fù)),求恰好在第二次抽檢到合格奶粉的概率.

查看答案和解析>>

同步練習(xí)冊答案