設(shè)橢圓的離心率為e=

(1)橢圓的左、右焦點(diǎn)分別為F1、F2、A是橢圓上的一點(diǎn),且點(diǎn)A到此兩焦點(diǎn)的距離之和為4,求橢圓的方程.

(2)求b為何值時(shí),過(guò)圓x2+y2=t2上一點(diǎn)M(2,)處的切線交橢圓于Q1、Q2兩點(diǎn),而且OQ1⊥OQ2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:福建福州八中2009年元月高三調(diào)研考試試卷(數(shù)學(xué)文) 題型:044

設(shè)橢圓的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.

(1)求橢圓C的方程;

(2)橢圓C上一動(dòng)點(diǎn)P(x0,y0)關(guān)于直線y=2x的對(duì)稱點(diǎn)為P1(x1,y1),求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9.設(shè)橢圓的離心率為e=,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)

A.必在圓x2+y2=2內(nèi)             B.必在圓x2+y2=2上

C.必在圓x2+y2=2外             D.以上三種情形都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12.設(shè)橢圓的離心率為e=,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)

A.必在圓x2+y2=2上             B.必在圓x2+y2=2外

C.必在圓x2+y2=2內(nèi)             D.以上三種情形都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(江西) 題型:選擇題

設(shè)橢圓的離心率為e,右焦點(diǎn)為F(c,0),方程ax2bxc=0的兩個(gè)實(shí)根分別為x1x2,則點(diǎn)P(x1,x2)

A.必在圓x2y2=2內(nèi)             B.必在圓x2y2=2上

C.必在圓x2y2=2外             D.以上三種情形都有可能

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的離心率為e=,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)

A.必在圓x2+y2=2內(nèi)             B.必在圓x2+y2=2上

C.必在圓x2+y2=2外             D.以上三種情形都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案