A
分析:g(x)有兩個(gè)零點(diǎn),x
2-2ax=2alnx兩側(cè)的圖象有兩個(gè)交點(diǎn),即y
1=x
2-2ax,y
2=2alnx有兩個(gè)交點(diǎn),二次函數(shù)的對(duì)稱軸是x=a且過(guò)原點(diǎn),對(duì)數(shù)型函數(shù)若遞減時(shí),不能有兩個(gè)交點(diǎn),且對(duì)稱軸越大,有兩個(gè)交點(diǎn).
解答:∵函數(shù)f(x)=x
2-2alnx,(a>0),
令g(x)=f(x)-2ax=x
2-2ax-2alnx=0,
∵g(x)有兩個(gè)零點(diǎn)
∴x
2-2ax=2alnx兩側(cè)的圖象有兩個(gè)交點(diǎn),
即y
1=x
2-2ax,y
2=2alnx有兩個(gè)交點(diǎn),
二次函數(shù)的對(duì)稱軸是x=a,過(guò)原點(diǎn),
當(dāng)對(duì)數(shù)型函數(shù)所過(guò)的與橫軸的交點(diǎn)在二次函數(shù)與橫軸交點(diǎn)的左邊,
即1<2a,
所以a>
且對(duì)稱軸越大,有兩個(gè)交點(diǎn),
故選A.
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn),在解題時(shí)注意對(duì)于兩個(gè)函數(shù)的整理,變化成基本初等函數(shù),可以根據(jù)選擇題目的特殊性來(lái)解,即取值檢驗(yàn).