14.$\frac{{\sqrt{3}tan10°+1}}{{({4{{cos}^2}10°-2})sin10°}}$=4.

分析 利用兩角和與差的三角函數(shù)以及二倍角公式化簡(jiǎn)求解即可.

解答 解:原式=$\frac{\sqrt{3}sin10°+cos10°}{2cos20°sin10°cos10°}$=$\frac{{2sin({10°+30°})}}{2cos20°sin10°cos10°}$=$\frac{2sin40°}{sin20°cos20°}=\frac{4sin40°}{sin40°}=4$.
故答案為:4.

點(diǎn)評(píng) 本題列出兩角和與差的三角函數(shù),二倍角公式的應(yīng)用,三角函數(shù)化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知等差數(shù)列{an}滿足:a9=19,a4+a8=26,{an}的前n項(xiàng)和為Sn
(1)求an及Sn
(2)令bn=$\frac{1}{{a}_{n}^{2}-4n-2}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y+2≥0}\\{x+2y+1≤0}\\{y≥0}\end{array}\right.$,則z=(x+1)2+(y-2)2的最小值是$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知180°<α<360°,則$\sqrt{1+cosα}$等于( 。
A.-$\sqrt{2}$cos$\frac{α}{2}$B.$\sqrt{2}$cos$\frac{α}{2}$C.-$\sqrt{2}$sin$\frac{α}{2}$D.$\sqrt{2}$sin$\frac{α}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過(guò)點(diǎn)A(1,3),且函數(shù)f(x)在x=-$\frac{4}{3}$處取得極值.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)在[-1,2]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列三角函數(shù)值的符號(hào)判斷錯(cuò)誤的是(  )
A.sin 165°>0B.cos 280°>0C.tan 170°>0D.tan 310°<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.隨著人們經(jīng)濟(jì)收入的不斷增長(zhǎng),購(gòu)買家庭轎車已不再是一種時(shí)尚.隨著使用年限的增加,車的維修與保養(yǎng)的總費(fèi)用到底會(huì)增加多少一直是購(gòu)車一族非常關(guān)心的問(wèn)題.某汽車銷售公司做一次抽樣調(diào)查,得出車的使用年限x(單位:年)與維修與保養(yǎng)的總費(fèi)用y(單位:千元)的統(tǒng)計(jì)結(jié)果如表:
使用年限x23456
維修與保養(yǎng)的總費(fèi)用y23569
根據(jù)此表提供的數(shù)據(jù)可得回歸直線方程$\stackrel{∧}{y}$=1.7x+$\hat a$,據(jù)此估計(jì)使用年限為10年時(shí),該款車的維修與保養(yǎng)的總費(fèi)用大概是( 。
A.15200B.12500C.15300D.13500

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若tanα=-2,則sin2α+sinαcosα=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)U={0,-1,-2,-3,-4},M={0,-1,-2},N={0,-3,-4},則(∁UM)∩N等于( 。
A.{0}B.{-1,-2}C.{-3,-4}D.{-1,-2,-3,-4}

查看答案和解析>>

同步練習(xí)冊(cè)答案