14.已知函數(shù)f(x)=kx(k≠0),且滿足f(x+1)•f(x)=x2+x,
( I)求函數(shù)f(x)的解析式;
( II)若函數(shù)f(x)為R上的增函數(shù),h(x)=$\frac{f(x)+1}{f(x)-1}$(f(x)≠1),問是否存在實(shí)數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值,若不存在,請說明理由.

分析 (I)利用f(x+1)•f(x)=x2+x,對一切x恒成立,得到k;
(II)由( I)得到k為1,即f(x)的解析式,代入h(x),判斷函數(shù)在[m,m+1]的單調(diào)性,得到關(guān)于m的方程組解之.

解答 解:(I)f(x+1)•f(x)=k(x+1)•kx=k2(x2+x)
所以(k2-1)(x2+x)=0對一切x恒成立,k2-1=0,得k=±1;
故f(x)=±x;                                                                      …6分
(II)因f(x)為R上的增函數(shù),
所以f(x)=x,則$h(x)=\frac{x+1}{x-1}=1+\frac{1}{x-1},x≠1$
而h(x)在(-∞,1)和(1,-∞)上是減函數(shù),
于是h(x)在[m,m+1]上單調(diào)遞減,…8分
則$\left\{\begin{array}{l}h(m)=m+1\\ h(m+1)=m\end{array}\right.$解得m=-1或m=2.                                 …12分.

點(diǎn)評 本題考查了函數(shù)解析式的求法以及函數(shù)單調(diào)性的運(yùn)用;屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列各式的值
(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$;
(2)(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(0.002)${\;}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知定點(diǎn)P(-2,0)和直線l:(1+3λ)x+(1+2λ)y-(2+5λ)=0,λ∈R,則點(diǎn)P到直線l的距離d的最大值為(  )
A.2$\sqrt{3}$B.$\sqrt{10}$C.$\sqrt{14}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題P:將函數(shù)sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象;命題Q:函數(shù)y=sin(x+$\frac{π}{6}$)cos($\frac{π}{3}$-x)的最小正周期是π,則復(fù)合命題“P或Q”“P且Q”“非P”為真命題的個(gè)數(shù)是2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)全集U={1,2,3,4,5,6,7},集合M={1,2,3,5},N={2,4,5},則Venn圖中陰影部分表示的集合是(  )
A.{1,3}B.{4}C.{3,5}D.{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1內(nèi)一點(diǎn)(2,1)的弦被該點(diǎn)平分,則該弦所在直線的斜率是(  )
A.2B.-2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若a,b是異面直線,直線c∥a,則c與b的位置關(guān)系是( 。
A.異面或相交B.相交C.異面D.平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果一個(gè)正四面體的體積為$\frac{16}{3}\sqrt{2}$dm3,則其表面積S的值為( 。
A.16dm2B.18 dm2C.$18\sqrt{3}$dm2D.$16\sqrt{3}$dm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等比數(shù)列{an},a1=1,a4=-8,則S7=$\frac{128}{3}$.

查看答案和解析>>

同步練習(xí)冊答案