已知函數(shù)
(1)若函數(shù)f(x)在x=x1,x=x2處取得極值,且|x1-x2|=2,求a的值及f(x)的單調(diào)區(qū)間;
(2)若,求曲線f(x)與的交點(diǎn)個數(shù).
【答案】分析:(1)由函數(shù),知f′(x)=x2-2ax-1,由函數(shù)f(x)在x=x1,x=x2處取得極值,知x1+x2=2a,x1•x2=-1,由|x1-x2|=2,能求出a=0.由此能求出f(x)的單調(diào)區(qū)間.
(2)設(shè) F(x)=f(x)-g(x),則F(x)=,由F′(x)=x2-(2a+1)x+2a=(x-1)(x-2a),,-2≤x≤0,知F(x)在[-2,0]上是增函數(shù),再由F(-2)<0,F(xiàn)(0)>0,知曲線f(x)與,(-2≤x≤0)的交點(diǎn)個數(shù)是1個.
解答:解:(1)∵函數(shù),
∴f′(x)=x2-2ax-1,
∵函數(shù)f(x)在x=x1,x=x2處取得極值,
∴x1+x2=2a,x1•x2=-1,
∵|x1-x2|=2,
==2,
∴a=0.
∴f′(x)=x2-1,
由f′(x)=x2-1>0,得x<-1,或x>1;
由f′(x)=x2-1<0,得-1<x<1,
∴f(x)在(-∞,-1)增,在(-1,1)減,在(1,+∞)增.
(2)設(shè) F(x)=f(x)-g(x),

,(-2≤x≤0),
∴F(x)=,
∴F′(x)=x2-(2a+1)x+2a=(x-1)(x-2a),
,-2≤x≤0,
∴F′(x)=x2-(2a+1)x+2a=(x-1)(x-2a)>0,
F(x)在[-2,0]上是增函數(shù),
∵F(-2)=--4a+<0,
F(0)=,
∴曲線f(x)與,(-2≤x≤0)的交點(diǎn)個數(shù)是1個.
點(diǎn)評:本題考查導(dǎo)數(shù)在最大值和最小值問題中的應(yīng)用,考查利用導(dǎo)數(shù)求兩個函數(shù)的交點(diǎn)的數(shù),考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時要認(rèn)真審題,仔細(xì)解答.
”應(yīng)該更正為“,(-2≤x≤0)”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(a+1)x+lg|a+2|,g(x)=(a+1)x,(a∈R,a≠-2).
(1)若函數(shù)f(x)和g(x)在區(qū)間[lg|a+2|,(a+1)2]上都是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)在(1)的條件下,比較f(1)與
16
的大小,寫出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(ax+b)圖象過點(diǎn)A(2,1)和B(5,2),設(shè)an=3f(n),n∈N*
(Ⅰ)求函數(shù)f(x)的解析式及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
對一切n∈N*均成立的最大實(shí)數(shù)a;
(Ⅲ)對每一個k∈N*,在ak與ak+1之間插入2k-1個2,得到新數(shù)列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,記為{bn},設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,試問是否存在正整數(shù)m,使Tm=2008?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果是函數(shù)的一個極值,稱點(diǎn)是函數(shù)的一個極值點(diǎn).已知函數(shù)

(1)若函數(shù)總存在有兩個極值點(diǎn),求所滿足的關(guān)系;

(2)若函數(shù)有兩個極值點(diǎn),且存在,求在不等式表示的區(qū)域內(nèi)時實(shí)數(shù)的范圍.

(3)若函數(shù)恰有一個極值點(diǎn),且存在,使在不等式表示的區(qū)域內(nèi),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三12月月考數(shù)學(xué)理卷 題型:解答題

(本小題滿分14分)已知函數(shù) 

(1)若函數(shù)在區(qū)間其中a >0,上存在極值,求實(shí)數(shù)a的取值范圍;

(2)如果當(dāng)時,不等式恒成立,求實(shí)數(shù)k的取值范圍;

(3)求證.

 

查看答案和解析>>

同步練習(xí)冊答案