命題:已知a、b為實數(shù),若x2+ax+b≤0有非空解集,則a2-4b≥0,寫出該命題的逆命題、否命題、逆否命題,并判斷這些命題的真假.
【答案】分析:原命題中,a、b為實數(shù)是前提,條件是x2+ax+b≤0有非空解集(即不等式有解),結(jié)論是a2-4b≥0,由四種命題的關(guān)系可得出其他三種命題.
解答:解:逆命題:已知a、b為實數(shù),若a2-4b≥0,則x2+ax+b≤0有非空解集.
否命題:已知a、b為實數(shù),若x2+ax+b≤0沒有非空解集,則a2-4b<0.
逆否命題:已知a、b為實數(shù),若a2-4b<0,則x2+ax+b≤0沒有非空解集.
原命題、逆命題、否命題、逆否命題均為真命題.
點評:本題以復(fù)合命題的真假為載體考查二次方程的解的問題.熟練掌握四種命題的定義,復(fù)合命題的真值表,特稱命題的否定的方法是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題(i為虛數(shù)單位)中正確的是
①已知a,b∈R,則a=b是(a-b)+(a+b)i為純虛數(shù)的充要條件;
②當(dāng)z是非零實數(shù)時,|z+
1
z
|≥2恒成立;
③復(fù)數(shù)z=(1-i)3的實部和虛部都是-2;
④如果|a+2i|<|-2+i|,則實數(shù)a的取值范圍是-1<a<1;
⑤復(fù)數(shù)z=1-i,則
1
z
+z=
3
2
+
1
2
i
其中正確的命題的序號是
②③④
②③④
.(注:把你認(rèn)為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題:
①已知p、q為兩個命題,若“p∨q”為假命題,則“?p∧?q”為真命題;
②已知隨機(jī)變量X服從正態(tài)分布N(3,1),且P(2≤x≤4)=0.6826,則P(x>4)=0.1587;
③“m<
1
4
”是“一元二次方程x2+x+m=0有實根”的必要不充分條件;
④命題“若a>b,則2a>2b-1”的否命題為:若a≤b,則2a≤2b-1.
其中不正確的命題個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:

的充要條件;

② 已知A、B是雙曲實軸的兩個端點,M,N是雙曲線上關(guān)于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2,且的最小值為2,則雙曲線的離心率e=;

③ 取一根長度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于1 m的概率是;

④ 一個圓形紙片,圓心為OF為圓內(nèi)一定點,M是圓周上一動點,把紙片折疊使MF重合,然后抹平紙片,折痕為CD,設(shè)CDOM交于P,則P的軌跡是橢圓。

其中真命題的序號是                 。(填上所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年吉林省吉林市高三(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知下列命題:
①已知p、q為兩個命題,若“p∨q”為假命題,則“¬p∧¬q”為真命題;
②已知隨機(jī)變量X服從正態(tài)分布N(3,1),且P(2≤x≤4)=0.6826,則P(x>4)=0.1587;
③“”是“一元二次方程x2+x+m=0有實根”的必要不充分條件;
④命題“若a>b,則2a>2b-1”的否命題為:若a≤b,則2a≤2b-1.
其中不正確的命題個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:

的充要條件;

② 已知A、B是雙曲實軸的兩個端點,M,N是雙曲線上關(guān)于x軸對稱的兩點,直線AMBN的斜率分別為k1,k2,且的最小值為2,則雙曲線的離心率e=

③ 取一根長度為3 m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于1 m的概率是;

④ 一個圓形紙片,圓心為O,F為圓內(nèi)一定點,M是圓周上一動點,把紙片折疊使MF重合,然后抹平紙片,折痕為CD,設(shè)CDOM交于P,則P的軌跡是橢圓。

其中真命題的序號是                 。(填上所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案