(2003•北京)如圖,已知橢圓的長軸A1A2與x軸平行,短軸B1B2在y軸上,中心M(0,r)(b>r>0
(Ⅰ)寫出橢圓方程并求出焦點坐標和離心率;
(Ⅱ)設直線y=k1x與橢圓交于C(x1,y1),D(x2,y2)(y2>0),直線y=k2x與橢圓次于G(x3,y3),H(x4,y4)(y4>0).求證:
k1x1x2
x1+x2
=
k1x3x4
x3+x4
;
(Ⅲ)對于(Ⅱ)中的在C,D,G,H,設CH交x軸于P點,GD交x軸于Q點,求證:|OP|=|OQ|
(證明過程不考慮CH或GD垂直于x軸的情形)
分析:(Ⅰ)根據(jù)橢圓的長軸A1A2與x軸平行,短軸B1B2在y軸上,中心M(0,r),即可得橢圓方程,從而可得焦點坐標與離心率;
(Ⅱ)將直線CD的方程y=k1x代入橢圓方程,利用韋達定理,可得
x1x2
x1+x2
=
r2-b2
2k1r
;將直線GH的方程y=k2x代入橢圓方程
x2
a2
+
(y-r)2
b2
=1
,同理可得
x3x4
x3+x4
=
r2-b2
2k2r
,由此可得結論;
(Ⅲ)設點P(p,0),點Q(q,0),由C、P、H共線,得p=
(k1-k2)x1x4
k1x1-k2x4
;由D、Q、G共線,可得  
q=
(k1-k2)x2x3
k1x2-k2x3
,由此可得結論.
解答:(Ⅰ)解:∵橢圓的長軸A1A2與x軸平行,短軸B1B2在y軸上,中心M(0,r),
∴橢圓方程為
x2
a2
+
(y-r)2
b2
=1

焦點坐標為F1(-
a2-b2
,r)
,F2(
a2-b2
,r)

離心率e=
a2-b2
a

(Ⅱ)證明:將直線CD的方程y=k1x代入橢圓方程
x2
a2
+
(y-r)2
b2
=1
,得b2x2+a2(k1x-r)2=a2b2
整理得(b2+a2k12)x2-2k1a2rx+(a2r2-a2b2)=0
根據(jù)韋達定理,得x1+x2=
2k1a2r
b2+a2k12
x1x2=
a2r2-a2b2
b2+a2k12
,
所以  
x1x2
x1+x2
=
r2-b2
2k1r

將直線GH的方程y=k2x代入橢圓方程
x2
a2
+
(y-r)2
b2
=1
,同理可得
x3x4
x3+x4
=
r2-b2
2k2r

由 ①、②得   
k1x1x2
x1+x2
=
r2-b2
2r
=
k2x3x4
x3+x4

所以結論成立
(Ⅲ)證明:設點P(p,0),點Q(q,0)
由C、P、H共線,得   
x1-p
x4-p
=
k1x1
k2x4

解得   p=
(k1-k2)x1x4
k1x1-k2x4

由D、Q、G共線,同理可得   
x2-p
x3-p
=
k1x2
k2x3

q=
(k1-k2)x2x3
k1x2-k2x3

k1x1x2
x1+x2
=
k2x3x4
x3+x4
變形得-
(k1-k2)x1x4
k1x1-k2x4
=
(k1-k2)x2x3
k1x2-k2x3

所以|p|=|q|
即|OP|=|OQ|
點評:本題考查橢圓的方程,考查直線與橢圓的位置關系,考查不等式的證明,認真審題,細心計算是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2003•北京)如圖,三棱柱ABC-A1B1C1的底面是邊長為3的正三角形,側棱AA1垂直于底面ABC,AA1=
3
3
2
,D是CB延長線上一點,且BD=BC.
(1)求證:直線BC1∥平面AB1D;
(2)求二面角B1-AD-B的大;
(3)求三棱錐C1-ABB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2003•北京)如圖,正三棱柱ABC-A1B1C1中,D是BC的中點,AB=a.
(Ⅰ)求證:直線A1D⊥B1C1;
(Ⅱ)求點D到平面ACC1的距離;
(Ⅲ)判斷A1B與平面ADC1的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2003•北京)如圖,A1,A為橢圓的兩個頂點,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點.
(Ⅰ)寫出橢圓的方程及準線方程;
(Ⅱ)過線段OA上異于O,A的任一點K作OA的垂線,交橢圓于P,P1兩點,直線A1P與AP1交于點M.求證:點M在雙曲線
x2
25
-
y2
9
=1
上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2003•北京)有三個新興城鎮(zhèn)分別位于A、B、C三點處,且AB=AC=a,BC=2b,今計劃合建一個中心醫(yī)院,為同時方便三鎮(zhèn),準備建在BC的垂直平分線上的P點處(建立坐標系如圖).
(Ⅰ)若希望點P到三鎮(zhèn)距離的平方和最小,則P應位于何處?
(Ⅱ)若希望點P到三鎮(zhèn)的最遠距離為最小,則P應位于何處?

查看答案和解析>>

同步練習冊答案