設(shè)事件A發(fā)生的概率為p,證明:事件A在一次試驗(yàn)中發(fā)生次數(shù)ξ的方差不超過(guò)
證明:記一次試驗(yàn)中事件A發(fā)生的次數(shù)ξ可能的值為0,1,
ξ的分布列為

∴ξ的期望E(ξ)=0×(1-p)+1×p=p,
D(ξ)=(0-p)2×(1-p)+(1-p)2×p=p-p2=p(1-p)≤,
當(dāng)且僅當(dāng)p=1-p,
時(shí)取等號(hào)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)事件A發(fā)生的概率為p,證明事件A在一次試驗(yàn)中發(fā)生次數(shù)ξ的方差不超過(guò)1/4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)事件A發(fā)生的概率為P,若在A(yíng)發(fā)生的條件下B發(fā)生的概率為P′,則由A產(chǎn)生B的概率為PP′,根據(jù)這一規(guī)律解答下題:一種擲硬幣走跳棋的游戲:棋盤(pán)上有第0,1,2,3,…,100,共101站,設(shè)棋子跳到第n站的概率為Pn,一枚棋子開(kāi)始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若硬幣出現(xiàn)正面則棋子向前跳動(dòng)一站,出現(xiàn)反面則向前跳動(dòng)兩站,直到棋子跳到第99站(獲勝)或100站(失敗)時(shí),游戲結(jié)束.已知硬幣出現(xiàn)正反面的概率都為
12

(1)求P1,P2,P3,并根據(jù)棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)事件A發(fā)生的概率為p(0<p<1),

(1)證明事件A在一次試驗(yàn)中發(fā)生次數(shù)ε的方差不超過(guò).

(2) 求的最大值

(3)在n次獨(dú)立重復(fù)實(shí)驗(yàn)中,事件A發(fā)生次數(shù)ξ的方差最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)事件A發(fā)生的概率為p,證明事件A在一次試驗(yàn)中發(fā)生次數(shù)ξ的方差不超過(guò)1/4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)事件A發(fā)生的概率為P,若在A(yíng)發(fā)生的條件下B發(fā)生的概率為P′,則由A產(chǎn)生B的概率為PP′,根據(jù)這一規(guī)律解答下題:一種擲硬幣走跳棋的游戲:棋盤(pán)上有第0,1,2,3,…,100,共101站,設(shè)棋子跳到第n站的概率為Pn,一枚棋子開(kāi)始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若硬幣出現(xiàn)正面則棋子向前跳動(dòng)一站,出現(xiàn)反面則向前跳動(dòng)兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r(shí),游戲結(jié)束.已知硬幣出現(xiàn)正反面的概率都為
1
2

(1)求P1,P2,P3,并根據(jù)棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案