【題目】某班從3名男生a,b,c和2名女生d,e中任選3名代表參加學(xué)校的演講比賽,則男生a和女生d至少有一人被選中的概率為

【答案】0.9
【解析】從3名男生a,b,c和2名女生d,e中任選3名代表參加學(xué)校的演講比賽,基本事件有(a,b,c),(a,b,d),(a,b,e),(a,c,d),(a,c,e),(a,d,e),(b,c,d),(b,c,e),(b,d,e),(c,d,e),共有10種,其中男生a和女生d至少有一人被選中的有9種,故男生a和女生d至少有一人被選中的概率為 =0.9.列舉出所有的基本事件,計算基本事件總數(shù),找到符合條件的基本事件,計算復(fù)合事件所包含的基本事件個數(shù),利用古典概型概率公式計算。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別根據(jù)下列條件,求雙曲線的標(biāo)準(zhǔn)方程.
(1)右焦點為 ,離心率e=
(2)實軸長為4的等軸雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣π<φ<0)在區(qū)間 上單調(diào)遞增,且函數(shù)值從﹣2增大到0.若 ,且f(x1)=f(x2),則f(x1+x2)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過點(2,5),g(x)=(x+a)f(x).
(1)求曲線y=g(x)有斜率為0的切線,求實數(shù)a的取值范圍;
(2)若當(dāng)x=﹣1時函數(shù)y=g(x)取得極值,確定y=g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個正方體的玩具,六個面標(biāo)注了數(shù)字1,2,3,4,5,6,甲、乙兩位學(xué)生進(jìn)行如下游戲:甲先拋擲一次,記下正方體朝上的數(shù)字 ,再由乙拋擲一次,記下正方體朝上數(shù)字 ,若 就稱甲、乙兩人“默契配合”,則甲、乙兩人“默契配合”的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+3ax2+3x+1,當(dāng)x∈[2,+∞),f(x)≥0恒成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要分析學(xué)生初中升學(xué)考試的數(shù)學(xué)成績對高一年級數(shù)學(xué)學(xué)習(xí)有什么影響,在高一年級學(xué)生中隨機抽取10名學(xué)生,分析他們?nèi)雽W(xué)的數(shù)學(xué)成績(x)和高一年級期末數(shù)學(xué)考試成績(y)(如下表):

編號

1

2

3

4

5

6

7

8

9

10

x

63

67

45

88

81

71

52

99

58

76

y

65

78

52

85

92

89

73

98

56

75


(1)畫出散點圖;
(2)判斷入學(xué)成績(x)與高一期末考試成績(y)是否有線性相關(guān)關(guān)系;
(3)如果x與y具有線性相關(guān)關(guān)系,求出回歸直線方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則將f(x)的圖象向右平移 個單位所得曲線的一條對稱軸的方程是(
A.x=π
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCD-A1B1C1D1中,BB1與平面ACD1所成的角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案