在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c.已知
(1)若△ABC的面積等于,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面積.
【答案】分析:(Ⅰ)先通過余弦定理求出a,b的關(guān)系式;再通過正弦定理及三角形的面積求出a,b的另一關(guān)系式,最后聯(lián)立方程求出a,b的值.
(Ⅱ)通過C=π-(A+B)及二倍角公式及sinC+sin(B-A)=2sin2A,求出∴sinBcosA=2sinAcosA.當cosA=0時求出a,b的值進而通過absinC求出三角形的面積;當cosA≠0時,由正弦定理得b=2a,聯(lián)立方程解得a,b的值進而通過absinC求出三角形的面積.
解答:解:(Ⅰ)∵c=2,C=,c2=a2+b2-2abcosC
∴a2+b2-ab=4,
又∵△ABC的面積等于,
,
∴ab=4
聯(lián)立方程組,解得a=2,b=2
(Ⅱ)∵sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sin2A=4sinAcosA,
∴sinBcosA=2sinAcosA
當cosA=0時,,,,,求得此時
當cosA≠0時,得sinB=2sinA,由正弦定理得b=2a,
聯(lián)立方程組解得,
所以△ABC的面積
綜上知△ABC的面積
點評:本小題主要考查三角形的邊角關(guān)系,三角函數(shù)公式等基礎(chǔ)知識,考查綜合應(yīng)用三角函數(shù)有關(guān)知識的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對邊長分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習冊答案