將函數(shù)f(x)2sin 的圖象向右平移φ(φ0)個(gè)單位,再將圖象上每一點(diǎn)橫坐標(biāo)縮短到原來的倍,所得圖象關(guān)于直線x對(duì)稱.則φ的最小正值為( )

A. B. C. D.

 

B

【解析】f(x)2sin f(x)2sin

f(x)2sin .因?yàn)橹本x為對(duì)稱軸,

所以2φkπ (kZ),即φ=-kπ (kZ)

因?yàn)?/span>φ0,則k0時(shí),φmin.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用11練習(xí)卷(解析版) 題型:填空題

已知圓的方程為x2y26x8y0,設(shè)該圓中過點(diǎn)(3,5)的最長(zhǎng)弦和最短弦分別為ACBD,則四邊形ABCD的面積是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題

執(zhí)行如圖所示的程序框圖,任意輸入一次x(0≤x≤1)y(0≤y≤1),則能輸出數(shù)對(duì)(x,y)的概率為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題

ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c.b2c2a2bc,則sin(BC)( )

A.- B. C.- D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練1練習(xí)卷(解析版) 題型:填空題

設(shè)f(x)sin 3xcos 3x,若對(duì)任意實(shí)數(shù)x都有|f(x)|≤a,則實(shí)數(shù)a的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題

已知四棱錐PABCD,底面ABCD是邊長(zhǎng)為2的菱形,BAD60°,PAPD2,平面PAD平面ABCD,則它的正視圖的面積為( )

A. B. C. D3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題6第2課時(shí)練習(xí)卷(解析版) 題型:填空題

某項(xiàng)游戲活動(dòng)的獎(jiǎng)勵(lì)分成一、二、三等獎(jiǎng)且相應(yīng)獲獎(jiǎng)概率是以a1為首項(xiàng),公比為2的等比數(shù)列,相應(yīng)資金是以700元為首項(xiàng),公差為-140元的等差數(shù)列,則參與該游戲獲得資金的期望為________元.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題5第3課時(shí)練習(xí)卷(解析版) 題型:解答題

設(shè)點(diǎn)P是圓x2y24上任意一點(diǎn),由點(diǎn)Px軸作垂線PP0,垂足為P0,且.

(1)求點(diǎn)M的軌跡C的方程;

(2)設(shè)直線lykxm(m≠0)(1)中的軌跡C交于不同的兩點(diǎn)A,B.

若直線OA,ABOB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知m,n為異面直線,m平面αn平面β.直線l滿足lm,ln,l?α,l?β,則(  )

Aαβlα

Bαβlβ

Cαβ相交,且交線垂直于l

Dαβ相交,且交線平行于l

 

查看答案和解析>>

同步練習(xí)冊(cè)答案