【題目】已知指數(shù)函數(shù)滿足又定義域?yàn)閷?shí)數(shù)集R的函數(shù) 是奇函數(shù)

確定的解析式;

的值;

若對(duì)任意的R,不等式恒成立,求實(shí)數(shù)的取值范圍

【答案】;,;

【解析】

試題分析:設(shè)指數(shù)函數(shù),過點(diǎn),代入求;

因?yàn)槎x域?yàn)?/span>R,且是奇函數(shù),所以解得,又根據(jù)是奇函數(shù)滿足代入后解得;

根據(jù)奇函數(shù)將不等式化簡(jiǎn)為恒成立,根據(jù)所求得函數(shù)的解析式,判定函數(shù)的單調(diào)性,從而得到恒成立,根據(jù)的范圍

試題解析:解:設(shè),,則,

是奇函數(shù),且定義域?yàn)镽,,

,,又,,

,

,易知在R上為減函數(shù)

是奇函數(shù),從而不等式等價(jià)于,即恒成立,

在R上為減函數(shù),

即對(duì)于一切R有恒成立,判別式,

故實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極標(biāo)坐系中,已知圓的圓心,半徑

(1)求圓的極坐標(biāo)方程;

(2)若,直線的參數(shù)方程為t為參數(shù)),直線交圓兩點(diǎn),求弦長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,且an+1=an(an+1)(n∈N*),則m= + +…+ 的整數(shù)部分是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)圓錐的底面半徑為1,高為3,在圓錐中有一個(gè)半徑為x的內(nèi)接圓柱.

(1)試用x表示圓柱的高;

(2)當(dāng)x為何值時(shí),圓柱的側(cè)面積最大,最大側(cè)面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,四邊形

為矩形,平面平面,.

I)求證:平面

II)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為

試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老師的班上有四個(gè)體育健將甲、乙、丙、丁,他們都特別擅長(zhǎng)短跑,在某次運(yùn)動(dòng)會(huì)上,他們四人要組成一個(gè)米接力隊(duì),王老師要安排他們四個(gè)人的出場(chǎng)順序,以下是他們四人的對(duì)話:

甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;

丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙,我就不跑第一棒;

王老師聽了他們四人的對(duì)話,安排了一種合理的出場(chǎng)順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場(chǎng)順序中,跑第三棒的人是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)F(x)= 是定義在R上的函數(shù),其中f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x)對(duì)于x∈R恒成立,則(
A.f(2)>e2f(0),f(2012)<e2012f(0)
B.f(2)<e2f(0),f(2012)<e2012f(0)
C.f(2)>e2f(0),f(2012)>e2012f(0)
D.f(2)<e2f(0),f(2012)>e2012f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車忽如一夜春風(fēng)來(lái),遍布了各個(gè)城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)研機(jī)構(gòu)在該市隨機(jī)抽取了位市民進(jìn)行調(diào)查,得到的列聯(lián)表如下:

經(jīng)常使用

偶爾或不用

合計(jì)

歲及以下的人數(shù)

歲以上的人數(shù)

合計(jì)

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為使用共享單車的情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的歲以上的市民中利用分層抽樣的方法再抽取位市民,從這位市民中隨機(jī)選出位市民贈(zèng)送禮品,求選出的位市民中至少有位市民經(jīng)常使用共享單車的概率.

參考公式及數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)都大于1,且a1=2,a ﹣an+1﹣a +1=0(n∈N*).
(1)求證: ≤an<an+1≤n+2;
(2)求證: + + +…+ <1.

查看答案和解析>>

同步練習(xí)冊(cè)答案