已知.f(x)=loga(1-x)(a>0,a≠1),g(x)=loga(1+x)(a>0,且a≠1)
(1)求函數(shù)f(x)+g(x)的定義域;
(2)求使f(x)>0成立的x的取值范圍.
分析:(1)求出函數(shù)f(x)與函數(shù)g(x)的定義域,然后求出交集即可;
(2)利用對(duì)數(shù)的運(yùn)算法則化簡(jiǎn)f(x)>0通過(guò)a的范圍求解不等式成立的x的取值范圍.
解答:解:(1)依題意得1-x>0且1+x>0          (1分)
解得x<1且x>-1                       (2分)
故所求定義域?yàn)閧x|-1<x<1}…(4分)
(2)由f(x)>0
得loga(1-x)>loga1(6分)
當(dāng)a>1時(shí),1-x>1即x<0(8分)
當(dāng)0<a<1時(shí),0<1-x<1即0<x<1(10分)
綜上,當(dāng)a>1時(shí),x的取值范圍是{x|x<0},當(dāng)0<a<1時(shí),x的取值范圍是{x|0<x<1}…(12分)
點(diǎn)評(píng):本題考查分類(lèi)討論思想的應(yīng)用,函數(shù)的定義域,不等式的解法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

已知f (x)=lo ga(a>0,a≠1)

()f (x)的定義域;

()判斷f (x)的奇偶性并予以證明;

()求使f (x)>0x取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省廣州一中高三數(shù)學(xué)二輪復(fù)習(xí):不等式(解析版) 題型:解答題

已知不等式2(lo2+7lo+3≤0的解集為M,求當(dāng)x∈M時(shí),函數(shù)f(x)=(lo)(lo)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)=lo數(shù)學(xué)公式[3-(x-1)2],求f(x)的值域及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知函數(shù)f(x)=數(shù)學(xué)公式,則f(2+lo數(shù)學(xué)公式)的值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):2.8 對(duì)數(shù)與對(duì)數(shù)函數(shù)(解析版) 題型:解答題

已知f(x)=lo[3-(x-1)2],求f(x)的值域及單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案