精英家教網 > 高中數學 > 題目詳情
若函數y=?(x)存在反函數y=?-1(x),則y=?-1(x)的圖象與y=-?(-x)的圖象關于直線______對稱.
y=?(x)與y=?-1(x)關于直線y=x對稱,
而y=?(x)與y=-?(-x)關于原點成中心對稱,
所以y=?-1(x)與y=-?(-x)關于直線y=-x對稱.
故答案為:y=-x..
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若二次函數f(x)=a
x
2
 
+bx+c(a≠0)
的圖象和直線y=x無交點,現(xiàn)有下列結論:
①方程f[f(x)]=x一定沒有實數根;
②若a>0,則不等式f[f(x)]>x對一切實數x都成立;
③若a<0,則必存存在實數x0,使f[f(x0)]>x0
④若a+b+c=0,則不等式f[f(x)]<x對一切實數都成立;
⑤函數g(x)=a
x
2
 
-bx+c
的圖象與直線y=-x也一定沒有交點.
其中正確的結論是
①②④⑤
①②④⑤
(寫出所有正確結論的編號).

查看答案和解析>>

科目:高中數學 來源:2012-2013學年安徽省示范高中高三(上)第一次聯(lián)考數學試卷(理科)(解析版) 題型:填空題

若二次函數的圖象和直線y=x無交點,現(xiàn)有下列結論:
①方程f[f(x)]=x一定沒有實數根;
②若a>0,則不等式f[f(x)]>x對一切實數x都成立;
③若a<0,則必存存在實數x,使f[f(x)]>x;
④若a+b+c=0,則不等式f[f(x)]<x對一切實數都成立;
⑤函數的圖象與直線y=-x也一定沒有交點.
其中正確的結論是    (寫出所有正確結論的編號).

查看答案和解析>>

科目:高中數學 來源:2012-2013學年安徽省示范高中高三(上)第一次聯(lián)考數學試卷(文科)(解析版) 題型:填空題

若二次函數的圖象和直線y=x無交點,現(xiàn)有下列結論:
①方程f[f(x)]=x一定沒有實數根;
②若a>0,則不等式f[f(x)]>x對一切實數x都成立;
③若a<0,則必存存在實數x,使f[f(x)]>x
④若a+b+c=0,則不等式f[f(x)]<x對一切實數都成立;
⑤函數的圖象與直線y=-x也一定沒有交點.
其中正確的結論是    (寫出所有正確結論的編號).

查看答案和解析>>

科目:高中數學 來源:2012-2013學年安徽省示范高中高三(上)第一次聯(lián)考數學試卷(理科)(解析版) 題型:填空題

若二次函數的圖象和直線y=x無交點,現(xiàn)有下列結論:
①方程f[f(x)]=x一定沒有實數根;
②若a>0,則不等式f[f(x)]>x對一切實數x都成立;
③若a<0,則必存存在實數x,使f[f(x)]>x;
④若a+b+c=0,則不等式f[f(x)]<x對一切實數都成立;
⑤函數的圖象與直線y=-x也一定沒有交點.
其中正確的結論是    (寫出所有正確結論的編號).

查看答案和解析>>

科目:高中數學 來源:2012-2013學年安徽省示范高中高三(上)第一次聯(lián)考數學試卷(文科)(解析版) 題型:填空題

若二次函數的圖象和直線y=x無交點,現(xiàn)有下列結論:
①方程f[f(x)]=x一定沒有實數根;
②若a>0,則不等式f[f(x)]>x對一切實數x都成立;
③若a<0,則必存存在實數x,使f[f(x)]>x
④若a+b+c=0,則不等式f[f(x)]<x對一切實數都成立;
⑤函數的圖象與直線y=-x也一定沒有交點.
其中正確的結論是    (寫出所有正確結論的編號).

查看答案和解析>>

同步練習冊答案