設函數f(x)=ex-1-x-ax2.
(1)若a=0,求f(x)的單調區(qū)間;
(2)若當x≥0時f(x)≥0,求a的取值范圍.
分析:(1)先對函數f(x)求導,導函數大于0時原函數單調遞增,導函數小于0時原函數單調遞減.
(2)根據e
x≥1+x可得不等式f′(x)≥x-2ax=(1-2a)x,從而可知當1-2a≥0,即
a≤時,f′(x)≥0判斷出函數f(x)的單調性,得到答案.
解答:解:(1)a=0時,f(x)=e
x-1-x,f′(x)=e
x-1.
當x∈(-∞,0)時,f'(x)<0;當x∈(0,+∞)時,f'(x)>0.
故f(x)在(-∞,0)單調減少,在(0,+∞)單調增加
(II)f′(x)=e
x-1-2ax
由(I)知e
x≥1+x,當且僅當x=0時等號成立.故f′(x)≥x-2ax=(1-2a)x,
從而當1-2a≥0,即
a≤時,f′(x)≥0(x≥0),而f(0)=0,
于是當x≥0時,f(x)≥0.
由e
x>1+x(x≠0)可得e
-x>1-x(x≠0).
從而當
a>時,f′(x)<e
x-1+2a(e
-x-1)=e
-x(e
x-1)(e
x-2a),
故當x∈(0,ln2a)時,f'(x)<0,而f(0)=0,于是當x∈(0,ln2a)時,f(x)<0.
綜合得a的取值范圍為
(-∞,].
點評:本題主要考查利用導數研究函數性質、不等式恒成立問題以及參數取值范圍問題,考查分類討論、轉化與劃歸解題思想及其相應的運算能力.