【題目】在平面直角坐標(biāo)系中,點0(0,0),P(6,8),將向量 繞點O逆時針方向旋轉(zhuǎn) 后得向量 ,則點Q的坐標(biāo)是( )
A.(﹣7 ,﹣ )
B.(﹣7 , )
C.(﹣4 ,﹣2)
D.(﹣4 ,2)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三年級期末統(tǒng)考測試的學(xué)生中抽出80名學(xué)生,其數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖所示.
(Ⅰ)估計這次測試數(shù)學(xué)成績的中位數(shù);
(Ⅱ)假設(shè)在[90,100]段的學(xué)生的數(shù)學(xué)成績都不相同,且都超過94分.若將頻率視為概率,現(xiàn)用簡單隨機(jī)抽樣的方法,從95,96,97,98,99,100這6個數(shù)中任意抽取3個數(shù),有放回地抽取了3次,記這3次抽取中,恰好是三個學(xué)生的數(shù)學(xué)成績的次數(shù)為,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系.圓C1 , 直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos( )=2 .
(1)求C1與C2交點的極坐標(biāo);
(2)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,(為坐標(biāo)原點),直線:.拋物線:.
(Ⅰ)過直線上任意一點作圓的兩條切線,切點為.求四邊形的面積最小值;
(Ⅱ)若圓過點,且圓心在拋物線上,是圓在軸上截得的弦,試探究 運動時,弦長是否為定值?并說明理由;
(Ⅲ) 過點的直線分別與圓交于點兩點,若,問直線是否過定點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A、B為拋物線C:上兩點,A與B的中點的橫坐標(biāo)為2,直線AB的斜率為1.
(Ⅰ)求拋物線C的方程;
(Ⅱ)直線 交x軸于點M,交拋物線C:于點P,M關(guān)于點P的對稱點為N,連結(jié)ON并延長交C于點H.除H以外,直線MH與C是否有其他公共點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過拋物線x2=4y的焦點,且與拋物線交于A,B兩點,點O為坐標(biāo)原點.
(1)求拋物線準(zhǔn)線方程;
(2)若△AOB的面積為4,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高三年級從甲(文)乙(理)兩個年級組各選出7名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽儯M分:100分)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是85分,乙組學(xué)生成績的中位數(shù)是83分.
(1)求x和y的值;
(2)從成績在90分以上的學(xué)生中隨機(jī)取兩名學(xué)生,求甲組至少有一名學(xué)生的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com