10.已知⊙C:(x-1)2+(y-2)2=25,直線(xiàn)l:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)求證:對(duì)任意m∈R,直線(xiàn)l與⊙C恒有兩個(gè)交點(diǎn);
(2)求直線(xiàn)l被⊙C截得的線(xiàn)段的最短長(zhǎng)度,及此時(shí)直線(xiàn)l的方程.

分析 (1)判斷直線(xiàn)l是否過(guò)定點(diǎn),可將(2m+1)x+(m+1)y-7m-4=0,m∈R轉(zhuǎn)化為(x+y-4)+m(2x+y-7)=0,利用$\left\{\begin{array}{l}{x+y-4=0}\\{2x+y-7=0}\end{array}\right.$即可確定所過(guò)的定點(diǎn)A(3,1);再計(jì)算|AC|,與圓的半徑R=$\sqrt{5}$比較,判斷l(xiāng)與圓的位置關(guān)系;
(2)弦長(zhǎng)最小時(shí),l⊥AC,由kAC=-$\frac{1}{2}$直線(xiàn)l的斜率,從而由點(diǎn)斜式可求得l的方程.

解答 解:(1)證明:由(2m+1)x+(m+1)y-7m-4=0,m∈R得:
(x+y-4)+m(2x+y-7)=0,
∵m∈R,
∴$\left\{\begin{array}{l}{x+y-4=0}\\{2x+y-7=0}\end{array}\right.$得x=3,y=1,
故l恒過(guò)定點(diǎn)A(3,1);
又圓心C(1,2),
∴|AC|=$\sqrt{5}$<5(半徑)
∴點(diǎn)A在圓C內(nèi),從而直線(xiàn)l恒與圓C相交.
(2)∵弦長(zhǎng)的一半、該弦弦心距、圓的半徑構(gòu)成一個(gè)直角三角形,
∴當(dāng)l⊥AC(此時(shí)該弦弦心距最大),直線(xiàn)l被圓C截得的弦長(zhǎng)最小,
∵kAC=-$\frac{1}{2}$,
∴直線(xiàn)l的斜率kl=2,
∴由點(diǎn)斜式可得l的方程為2x-y-5=0.

點(diǎn)評(píng) 本題考查直線(xiàn)與圓的位置關(guān)系及恒過(guò)定點(diǎn)的直線(xiàn),難點(diǎn)在于(2)中“弦長(zhǎng)最小時(shí),l⊥AC”的理解與應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}各項(xiàng)不為0,a1=$\frac{1}{2}$,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,
(1)求{an}的通項(xiàng)an
(2)若bn=na${\;}_{{2}^{n}-1}$,求數(shù)列{bn}的前n項(xiàng)和Sn
(3)用數(shù)學(xué)歸納法證明:a1+a2+a3+…+a${\;}_{{2}^{n-1}}$>$\frac{n-2}{2}$(n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)試用比較法證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(m,n,a,b∈R)
(2)已知x2+y2=2,且|x|≠|(zhì)y|,求$\frac{1}{{9{x^2}}}+\frac{9}{y^2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.假設(shè)你家訂了一份牛奶,奶哥在早上6:00---7:00之間隨機(jī)地把牛奶送到你家,而你在早上6:30---7:30之間隨機(jī)地離家上學(xué),則你在離開(kāi)家前能收到牛奶的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S10=$\int_0^1{(\sqrt{1-{x^2}}}+2x-\frac{π}{4})dx$,則a5+a6=(  )
A.$\frac{12}{5}$B.12C.6D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.曲線(xiàn)y=4-x3在點(diǎn)(-1,5)處的切線(xiàn)方程是( 。
A.3x+y-2=0B.y=7x+2C.y=x-4D.y=7x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖所示,在三棱柱BCD-B1C1D1中,E、F分別是B1C1和C1D1的中點(diǎn).求證:四邊形EFDB是梯形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.到兩定點(diǎn)(-2,0),(2,0)的距離之差的絕對(duì)值為定值3的點(diǎn)的軌跡是( 。
A.橢圓B.線(xiàn)段C.直線(xiàn)D.雙曲線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知p:方程x2+2mx+(m+2)=0有兩個(gè)不等的正根;q:方程$\frac{x^2}{m+3}-\frac{y^2}{2m-1}=1$表示焦點(diǎn)在y軸上的雙曲線(xiàn).
(1)若q為真命題,求實(shí)數(shù)m的取值范圍;
(2)若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案