若等比數(shù)列{an}的前n項和Sn=3n+r,則r=( )
A.0
B.-1
C.1
D.3
【答案】分析:根據(jù)an=Sn-Sn-1求得數(shù)列的通項公式,進而求得a1,根據(jù)a1=S1求得r.
解答:解:∵Sn=3n+r,Sn-1=3n-1+r,(n≥2,n∈N+),
∴an=Sn-Sn-1=2•3n-1
又a1=S1=3+r,由通項得:a2=6,公比為3,
∴a1=2,
∴r=-1.
故選B
點評:本題主要考查了等比數(shù)列的性質(zhì),以及等差數(shù)列的前n項和公式.解題的關(guān)鍵是求出數(shù)列的通項公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項和Sn滿足:an+1=a1Sn+1(n∈N*),則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項和S n=3×2n+a(a為常數(shù)),則
a
2
1
+
a
2
2
+
a
2
3
+…+
a
2
n
=
3(4n-1)
3(4n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項和為Sn,a2=6,S3=21,則公比q=
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有數(shù)列{an},若存在M>0,使得對一切自然數(shù)n,都有|an|<M成立,則稱數(shù)列{an}有界,下列結(jié)論中:
①數(shù)列{an}中,an=
1n
,則數(shù)列{an}有界;
②等差數(shù)列一定不會有界;
③若等比數(shù)列{an}的公比滿足0<q<1,則{an}有界;
④等比數(shù)列{an}的公比滿足0<q<1,前n項和記為Sn,則{Sn}有界.
其中一定正確的結(jié)論有
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前項n和為Sn,且
S4
S2
=5,則
S8
S4
=
 

查看答案和解析>>

同步練習(xí)冊答案