【題目】近年來,共享單車已經(jīng)悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設(shè)置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現(xiàn)從評價系統(tǒng)中選出條較為詳細的評價信息進行統(tǒng)計,車輛狀況的優(yōu)惠活動評價的列聯(lián)表如下:

對優(yōu)惠活動好評

對優(yōu)惠活動不滿意

合計

對車輛狀況好評

對車輛狀況不滿意

合計

(1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關(guān)系?

(2)為了回饋用戶,公司通過向用戶隨機派送每張面額為元,元,元的 三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得元券,獲得元券的概率分別是,且各次獲取騎行券的結(jié)果相互獨立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為,求隨機變量的分布列和數(shù)學期望.

參考數(shù)據(jù):

參考公式:,其中.

【答案】(1) 在犯錯誤的概率不超過的前提下,不能認為優(yōu)惠活動好評與車輛狀況好評有關(guān)系.

(2)分布列見解析; (元).

【解析】試題分析:(1)由題意求得 的值,然后即可確定結(jié)論;
(2)由題意首先求得分布列,然后求解數(shù)學期望即可.

試題解析

(1)由列聯(lián)表的數(shù)據(jù),有

.

因此,在犯錯誤的概率不超過的前提下,不能認為優(yōu)惠活動好評與車輛狀況好評有關(guān)系.

(2)由題意,可知一次騎行用戶獲得元的概率為.的所有可能取值分別為,,,.

,

,

,

的分布列為:

的數(shù)學期望為 (元).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】高血壓高血糖和高血脂統(tǒng)稱“三高”.如圖是西南某地區(qū)從2010年至2016年患“三高”人數(shù)y(單位:千人)的折線圖.

1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請求出相關(guān)系數(shù)(精確到0.01)并加以說明;

2)建立關(guān)于的回歸方程,預測2018年該地區(qū)患“三高”的人數(shù).

參考數(shù)據(jù):,,.參考公式:相關(guān)系數(shù) 回歸方程 中斜率和截距的最小二乘法估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)函數(shù)處的切線與直線垂直,求實數(shù)的值;

2)若函數(shù)在定義域上有兩個極值點,且.

①求實數(shù)的取值范圍;

②求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花卉經(jīng)銷商銷售某種鮮花,售價為每支5元,成本為每支2元.銷售宗旨是當天進貨當天銷售.當天未售出的當垃圾處理.根據(jù)以往的銷售情況,按 進行分組,得到如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖計算該種鮮花日需求量的平均數(shù),同一組中的數(shù)據(jù)用該組區(qū)間中點值代表;

(2)該經(jīng)銷商某天購進了400支這種鮮花,假設(shè)當天的需求量為x枝,,利潤為y元,求關(guān)于的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計利潤不小于800元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知函數(shù),求函數(shù)時的值域;

(2)函數(shù)有兩個不同的極值點,,

①求實數(shù)的取值范圍;

②證明:.

(本題中可以參與的不等式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應的人數(shù)表:

將收看該節(jié)目場次不低于13場的觀眾稱為歌迷,已知歌迷中有10名女性.

1)根據(jù)已知條件完成下面的2×2列聯(lián)表

2)此資料我們能否有95%的把握認為歌迷與性別有關(guān)?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】件產(chǎn)品,其中件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽.求:(1)第一次抽到次品的概率;

2)第一次和第二次都抽到次品的概率;

3)在第一次抽到次品的條件下,第二次抽到次品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1~2010中選出總和為10067791005個數(shù)且這1005個數(shù)中任意兩數(shù)之和都不等于2011.

(1)證明: 為定值;

(2)取最小值時, 中所有小于1005的數(shù)之和。

查看答案和解析>>

同步練習冊答案