6.下列判斷正確的是( 。
A.0∉NB.1∈{x|(x-1)(x+2)=0}C.N*∈ZD.0={0}

分析 根據(jù)元素與集合的關(guān)系判斷即可.

解答 解:因為0是整數(shù),故A不對;
{x|(x-1)(x+2)=0}={1,2},故B對;
對于C是兩個集合之間的關(guān)系,不能用“∈”這個符號表示;
0是元素,{0}是集合,不能用“=”表示,故不正確,
故選B.

點評 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)=log3(x2+2x-8)的定義域為A,函數(shù)g(x)=x2+(m+1)x+m.
(1)若m=-4時,g(x)≤0的解集為B,求A∩B;
(2)若存在$x∈[0,\frac{1}{2}]$使得不等式g(x)≤-1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a>b,則下列不等式中恒成立的是(  )
A.$\frac{1}{a}$<$\frac{1}$B.a3>b3C.$\frac{1}{a}$>$\frac{1}$D.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A={x|x<a},B={x|1<x<4},若A⊆∁RB,則實數(shù)a的取值范圍為( 。
A.(-∞,1)B.(-∞,4]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)U=R,集合A={x|-2<x<1},B={x|-1<x≤4},則如圖中陰影部分表示的集合為{x|x≤-2,或-1<x<1,或x>4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.log0.50.125+log2[log3(log464)]等于(  )
A.-3B.3C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合M={1,9,a},集合P={1,a,2},若P⊆M,則實數(shù)a的取值個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系中,已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=4co{s}^{2}\frac{θ}{2}-1}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,兩坐標(biāo)系取相同的單位長度,曲線C2的極坐標(biāo)方程為ρ=-2sin(θ+$\frac{π}{6}$).
(1)把曲線C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求曲線C1與C2的交點M(ρ1,θ1)的極坐標(biāo),其中ρ1≤0,0≤θ1<2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知對任意x∈R,不等式2${\;}^{-{x}^{2}-x}$>($\frac{1}{2}$)${\;}^{2{x}^{2}-mx+m+4}$恒成立.求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案