【題目】已知橢圓 (a>b>0)的左、右焦點(diǎn)分別為F1(﹣3,0)、F2(3,0),直線y=kx與橢圓交于A、B兩點(diǎn).
(1)若三角形AF1F2的周長(zhǎng)為 ,求橢圓的標(biāo)準(zhǔn)方程;
(2)若 ,且以AB為直徑的圓過橢圓的右焦點(diǎn),求直線y=kx斜率k的取值范圍.
【答案】
(1)解:由題意得 ,得a=2 ,c=3.
結(jié)合a2=b2+c2,解得a2=12,b2=3.
橢圓的方程為
(2)解:由 ,得(b2+a2k2)x2﹣a2b2=0.
設(shè)A(x1,y1),B(x2,y2).
∴ ,
依題意,AF2⊥BF2,
∵ , ,
∴ = =0.
即 ,
將其整理為 .
∵ ,∴12≤a2<18.
∴ ,即k∈ .
【解析】(1)由題意得 ,求出a、c的值,結(jié)合隱含條件求得b,則橢圓方程可求;(2)聯(lián)立 ,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系得到A,B兩點(diǎn)橫坐標(biāo)的和與積,依題意,AF2⊥BF2 , 利用向量數(shù)量積為0得到關(guān)于a,k的關(guān)系式,在結(jié)合a的范圍得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一半徑為4米的水輪如圖所示,水輪圓心O距離水面2米,已知水輪每60秒逆時(shí)針轉(zhuǎn)動(dòng)5圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(shí)(圖象P0點(diǎn))開始計(jì)算時(shí)間,且點(diǎn)P距離水面的高度f(t)(米)與時(shí)間t(秒)滿足函數(shù):f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|< ).
(1)求函數(shù)f(t)的解析式;
(2)點(diǎn)P第二次到達(dá)最高點(diǎn)要多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,2AB=2AC=AA1 , 則異面直線BA1與B1C所成的角的余弦值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:存在x∈(﹣∞,1)使得x2﹣4x+m=0成立,命題q:方程 表示焦點(diǎn)在x軸上的橢圓.
(1)若p是真命題,求實(shí)數(shù)m的取值范圍;
(2)若p或q是假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=2, ;數(shù)列{bn}的前n項(xiàng)和為Sn , 且 . (Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)把數(shù)列{an}和{bn}的公共項(xiàng)從小到大排成新數(shù)列{cn},試寫出c1 , c2 , 并證明{cn}為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x﹣4y﹣12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d不等于0,Sn是其前n項(xiàng)和,給出下列命題:
①給定n(n≥2,且n∈N*),對(duì)于一切k∈N*(k<n),都有an﹣k+an+k=2an成立;
②存在k∈N* , 使得ak﹣ak+1與a2k+1﹣a2k﹣3同號(hào);
③若d>0.且S3=S8 , 則S5與S6都是數(shù)列{Sn}中的最小項(xiàng)
④點(diǎn)(1, ),(2, ),(3, ),…,(n, )(n∈N*),…,在同一條直線上.
其中正確命題的序號(hào)是 . (把你認(rèn)為正確的命題序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的半圓有一內(nèi)接梯形ABCD,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.若雙曲線以A、B為焦點(diǎn),且過C、D兩點(diǎn),則當(dāng)梯形ABCD的周長(zhǎng)最大時(shí),雙曲線的實(shí)軸長(zhǎng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正數(shù)數(shù)列{xn}滿足x1= ,xn+1= ,n∈N* .
(1)求x2 , x4 , x6 .
(2)猜想數(shù)列{x2n}的單調(diào)性,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com