(2013•揭陽(yáng)一模)如圖,設(shè)點(diǎn)F1(-c,0)、F2(c,0)分別是橢圓C:
x2
a2
+y2=1(a>1)
的左、右焦點(diǎn),P為橢圓C上任意一點(diǎn),且
PF1
PF2
最小值為0.
(1)求橢圓C的方程;
(2)設(shè)直線(xiàn)l1:y=kx+m,l2:y=kx+n,若l1、l2均與橢圓C相切,證明:m+n=0;
(3)在(2)的條件下,試探究在x軸上是否存在定點(diǎn)B,點(diǎn)B到l1,l2的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)B坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)設(shè)出P點(diǎn)坐標(biāo),得到向量
PF1
,
PF2
的坐標(biāo),由代入
PF1
PF2
得到關(guān)于x的函數(shù)關(guān)系式,求出其最小值,由最小值等于0得到c的值,則a2可求,所以橢圓C的方程可求;
(2)把兩條直線(xiàn)方程分別和橢圓方程聯(lián)立,由判別式等于0得到m與k和n與k的關(guān)系,進(jìn)一步證出m+n=0;
(3)假設(shè)在x軸上存在定點(diǎn)B,使點(diǎn)B到l1,l2的距離之積恒為1,由點(diǎn)到直線(xiàn)的距離公式求出點(diǎn)B到l1,l2的距離,代入后利用等式恒成立求出B點(diǎn)的橫坐標(biāo).
解答:解:(1)設(shè)P(x,y),則有
PF1
=(-c-x,-y)
,
PF2
=(c-x,-y)
.
PF1
PF2
=x2+y2-c2=
a2-1
a2
x2+1-c2,x∈[-a,a]

PF1
PF2
最小值為0,得1-c2=0,所以c=1,則a2=b2+c2=1+1=2,
∴橢圓C的方程為
x2
2
+y2=1
;
(2)把y=kx+m代入橢圓
x2
2
+y2=1
,得(1+2k2)x2+4mkx+2m2-2=0,
∵直線(xiàn)l1與橢圓C相切,∴△=16k2m2-4(1+2k2)(2m2-2)=0,化簡(jiǎn)得m2=1+2k2,
把y=kx+n代入橢圓
x2
2
+y2=1
,得(1+2k2)x2+4nkx+2n2-2=0,
∵直線(xiàn)l2與橢圓C相切,∴△=16k2n2-4(1+2k2)(2n2-2)=0,化簡(jiǎn)得n2=1+2k2,
∴m2=n2,若m=n,則l1,l2重合,不合題意,
∴m=-n,即m+n=0;
(3)設(shè)在x軸上存在點(diǎn)B(t,0),點(diǎn)B到直線(xiàn)l1,l2的距離之積為1,
|kt+m|
k2+1
|kt-m|
k2+1
=1
,即|k2t2-m2|=k2+1,
把1+2k2=m2代入并去絕對(duì)值整理,得k2(t2-3)=2或k2(t2-1)=0,
k2(t2-3)=2不滿(mǎn)足對(duì)任意的k∈R恒成立;而要使得k2(t2-1)=0對(duì)任意的k∈R恒成立
則t2-1=0,解得t=±1;
綜上所述,滿(mǎn)足題意的定點(diǎn)B存在,其坐標(biāo)為(-1,0)或(1,0).
點(diǎn)評(píng):本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了直線(xiàn)與圓錐曲線(xiàn)的關(guān)系,直線(xiàn)與圓錐曲線(xiàn)聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長(zhǎng)問(wèn)題、最值問(wèn)題、對(duì)稱(chēng)問(wèn)題、軌跡問(wèn)題等.突出考查了數(shù)形結(jié)合、分類(lèi)討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法.屬難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•揭陽(yáng)一模)已知集合A={x|y=log2(x+1)},集合B={y|y=(
1
2
)x,x>0}
,則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•揭陽(yáng)一模)已知復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為A(0,1),B(-1,3),則
z2
z1
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•揭陽(yáng)一模)如圖(1),在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,現(xiàn)將梯形沿CB、DA折起,使EF∥AB且EF=2AB,得一簡(jiǎn)單組合體ABCDEF如圖(2)示,已知M,N,P分別為AF,BD,EF的中點(diǎn).
(1)求證:MN∥平面BCF;
(2)求證:AP⊥DE;
(3)當(dāng)AD多長(zhǎng)時(shí),平面CDEF與平面ADE所成的銳二面角為60°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•揭陽(yáng)一模)一簡(jiǎn)單組合體的三視圖及尺寸如圖(1)示(單位:cm)則該組合體的體積為.( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•揭陽(yáng)一模)已知拋物線(xiàn)C:x2=4y的焦點(diǎn)為F,直線(xiàn)x-2y+4=0與C交于A,B兩點(diǎn).則cos∠AFB的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案