已知f(x)=
f(x-7),x≥0
log4(-x),x<0
,則f(2012)等于( 。
A、-1B、0C、1D、2
分析:當x≥0時,根據(jù)f(x)=f(x-7),可以得到周期為7,則f(2012)利用周期轉(zhuǎn)化為f(-4),即可求得答案.
解答:解:∵f(x)=
f(x-7),x≥0
log4(-x),x<0
,
∴當x≥0時,f(x)=f(x-7),
即f(x+7)=f(x),
故函數(shù)f(x)是周期為7的周期函數(shù),
∴f(2012)=f(288×7-4)=f(-4),
∵當x<0時,f(x)=log4(-x),
則f(-4)=log44=1,
∴f(2012)=1.
故選:C.
點評:本題考查了函數(shù)求值,函數(shù)的周期性.本題解題的關鍵是通過所給的關系式求出函數(shù)的周期,利用周期轉(zhuǎn)化求值.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)當a=1時,求f(x)的解析式;
(2)在(1)的條件下,若方程f(x)-m=0有4個不等的實根,求實數(shù)m的范圍;
(3)當2≤a<9時,設f(x)=f2(x)所對應的自變量取值區(qū)間的長度為l(閉區(qū)間[m,n]的長度定義為n-m),試求l的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-3x-
3
4
.定義函數(shù)f(x)與實數(shù)m的一種符號運算為m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函數(shù)值f(x)大于0的x的取值范圍;
(2)若g(x)=4?f(x)+
7
2
x2
,求g(x)在區(qū)間[0,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:天利38套《2008全國各省市高考模擬試題匯編(大綱版)》、數(shù)學文 大綱版 題型:044

已知函數(shù)f(x)=x3+bx2+cx+d(b、c、d∈R且都為常數(shù))的導函數(shù)為,且f(1)=7,設F(x)=f(x)-ax2(a∈R).

(Ⅰ)當a<2時,求F(x)的極小值;

(Ⅱ)若對任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范圍并證明不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學公式,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學公式上的值域為數(shù)學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案