(2008•上海模擬)特奧會期間,某高校有14名志愿者參加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,則開幕式當天不同的排班種數(shù)為
3153150
3153150
分析:由題設條件知,求解本計數(shù)問題,可分為三步解決,第一步先取出四人排早班,再取出四人排中班,第三步取出四人排晚班,由乘法原理即可計算出開幕式當天不同的排法種數(shù)
解答:解:由題意,此計數(shù)問題可以分為三步求解,第一步取四人排早班,有C144種方法;第二步取四人排中班,有C104種方法;第三步再從剩下的六人中選四人排晚班,有C64種種方法,故總的不同排法有C144C104C64=3153150
故答案為:3153150
點評:本題考查排列、組合及簡單計數(shù)問題,解題的關鍵是理解事件“每天排早、中、晚三班,每班4人,每人每天最多值一班”,確定出計數(shù)要分三步,用乘法原理,本題的難點是分三步計數(shù),本題以特奧會為背景,考查計數(shù)問題是近年高考常出現(xiàn)的一種命題方式
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)以拋物線y2=8
3
x
的焦點F為右焦點,且兩條漸近線是
3
y=0
的雙曲線方程為
x2
9
-
y2
3
=1
x2
9
-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)已知AB是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸,若把該長軸n等分,過每個等分點作AB的垂線,依次交橢圓的上半部分于點P1,P2,…,Pn-1,設左焦點為F1,則
lim
n→∞
1
n
(|F1A|+|F1P1|+…+|F1Pn-1|+|F1B|)
=
a
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)已知向量
m
n
,其中
m
=(
1
x3+c-1
,-1)
,
n
=(-1,y)
(x,y,c∈R),把其中x,y所滿足的關系式記為y=f(x),若函數(shù)f(x)為奇函數(shù).
(Ⅰ) 求函數(shù)f(x)的表達式;
(Ⅱ) 已知數(shù)列{an}的各項都是正數(shù),Sn為數(shù)列{an}的前n項和,且對于任意n∈N*,都有“{f(an)}的前n項和等于Sn2,”求數(shù)列{an}的通項式;
(Ⅲ) 若數(shù)列{bn}滿足bn=4n-a•2an+1(a∈R),求數(shù)列{bn}的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)集合A={x||x|<2}的一個非空真子集是
[0,1]
[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)一機器貓每秒鐘前進或后退一步,程序設計師讓機器貓以前進3步,然后再后退2步的規(guī)律移動.如果將此機器貓放在數(shù)軸的原點,面向正方向,以1步的距離為1單位長移動.令P(n)表示第n秒時機器貓所在位置的坐標,且P(0)=0,則下列結論中錯誤的是(  )

查看答案和解析>>

同步練習冊答案