【題目】設(shè)O為坐標原點,動點M在橢圓C: +y2=1上,過M做x軸的垂線,垂足為N,點P滿足 = .
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設(shè)點Q在直線x=﹣3上,且 =1.證明:過點P且垂直于OQ的直線l過C的左焦點F.
【答案】解:(Ⅰ)設(shè)M(x0 , y0),由題意可得N(x0 , 0),
設(shè)P(x,y),由點P滿足 = .
可得(x﹣x0 , y)= (0,y0),
可得x﹣x0=0,y= y0 ,
即有x0=x,y0= ,
代入橢圓方程 +y2=1,可得 + =1,
即有點P的軌跡方程為圓x2+y2=2;
(Ⅱ)證明:設(shè)Q(﹣3,m),P( cosα, sinα),(0≤α<2π),
=1,可得( cosα, sinα)(﹣3﹣ cosα,m﹣ sinα)=1,
即為﹣3 cosα﹣2cos2α+ msinα﹣2sin2α=1,
解得m= ,
即有Q(﹣3, ),
橢圓 +y2=1的左焦點F(﹣1,0),
由kOQ=﹣ ,
kPF= ,
由kOQkPF=﹣1,
可得過點P且垂直于OQ的直線l過C的左焦點F.
【解析】(Ⅰ)設(shè)M(x0 , y0),由題意可得N(x0 , 0),設(shè)P(x,y),運用向量的坐標運算,結(jié)合M滿足橢圓方程,化簡整理可得P的軌跡方程;
(Ⅱ)設(shè)Q(﹣3,m),P( cosα, sinα),(0≤α<2π),運用向量的數(shù)量積的坐標表示,可得m,即有Q的坐標,求得橢圓的左焦點坐標,求得OQ,PF的斜率,由兩直線垂直的條件:斜率之積為﹣1,即可得證.
【考點精析】解答此題的關(guān)鍵在于理解斜率的計算公式的相關(guān)知識,掌握給定兩點P1(x1,y1),P2(x2,y2),x1≠x2,用兩點的坐標來表示直線P1P2的斜率:斜率公式: k=y2-y1/x2-x1,以及對兩條直線垂直與傾斜角、斜率的關(guān)系的理解,了解兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負倒數(shù);反之,如果它們的斜率互為負倒數(shù),那么它們互相垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠C=,AC=BC,M、N分別是BC、AB的中點,將△BMN沿直線MN折起,使二面角B′﹣MN﹣B的大小為,則B'N與平面ABC所成角的正切值是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸:(12分)
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得 = xi=9.97,s= = =0.212, ≈18.439, (xi﹣ )(i﹣8.5)=﹣2.78,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
(1)求(xi , i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變。ㄈ魘r|<0.25,則可以認為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變小).
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在( ﹣3s, +3s)之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查.
(。⿵倪@一天抽檢的結(jié)果看,是否需對當(dāng)天的生產(chǎn)過程進行檢查?
(ⅱ)在( ﹣3s, +3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標準差.(精確到0.01)
附:樣本(xi , yi)(i=1,2,…,n)的相關(guān)系數(shù)r= , ≈0.09.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標系xoy中,橢圓的離心率為,過點.
(1)求橢圓C的方程;
(2)已知點P(2,1),直線與橢圓C相交于A,B兩點,且線段AB被直線OP平分.
①求直線的斜率;②若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C上的動點P()滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{}的前n項和=2-,數(shù)列{}滿足b1=1, b3+b7=18,且+=2(n≥2).
(1)求數(shù)列{}和{}的通項公式;
(2)若=,求數(shù)列{}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是_____________.
①.如果命題“”與命題“或”都是真命題,那么命題一定是真命題.
②.命題,則
③.命題“若,則”的否命題是:“若,則”
④.特稱命題 “,使”是真命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中, 在線段上運動且不與, 重合,給出下列結(jié)論:
①;
②平面;
③二面角的大小隨點的運動而變化;
④三棱錐在平面上的投影的面積與在平面上的投影的面積之比隨點的運動而變化;
其中正確的是( )
A. ①③④ B. ①③
C. ①②④ D. ①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com