定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x),且當(dāng)x∈[-1,1]時(shí),f(x)=x3
(1)求f(x)在[1,5]上的表達(dá)式;
(2)若A={x|f(x)>a,x∈R},且A≠ф,求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)由f(x+2)=-f(x)可推知函數(shù)為周期函數(shù)周期為4,再利用周期性求得f(x)在[1,3]和[3,5]的解析式.
(2)根據(jù)f(x)的周期函數(shù),從一個(gè)周期來(lái)考慮f(x)的值域.根據(jù)(1)中f(x)的解析式求得函數(shù)f(x)的值域,進(jìn)而求出a的范圍.
解答:解:(1)由f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),故f(x)的周期為4
(1)當(dāng)x∈[3,5]時(shí),x-4∈(-1,1],
∴f(x-4)=(x-4)3
又T=4,
∴f(x)=f(x-4)=(x-4)3,3≤x≤5
(2)當(dāng)x∈[1,3]時(shí),x-2∈[-1,1],
∴f(x-2)=(x-2)3
又f(x)=-f(x-2)=-(x-2)3,1≤x≤3,
故f(x)=
(2)∵f(x)的周期函數(shù),
∴f(x)的值域可以從一個(gè)周期來(lái)考慮
x∈[1,3]時(shí),f(x)∈(-1,1]
x∈[3,5]時(shí),f(x)∈[-1,1]
∴f(x)>a,對(duì)x∈R有空解,
∴a<1
點(diǎn)評(píng):本題主要考查了函數(shù)的周期性.解題的關(guān)鍵是求出f(x)在不同區(qū)間上的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個(gè)最低點(diǎn)之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對(duì)稱中心都在f(x)圖象的對(duì)稱軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對(duì)應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案