橢圓上一點M到焦點的距離為2,的中點,
等于( *** )
A.2B.C.D.
B

分析:|MF|=10-2=8,ON是△MFF的中位線,由此能求出|ON|的值.
解答:解:∵|MF|=10-2=8,
ON是△MFF的中位線,
∴|ON|==4,
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓(a>b>0)的離心率,過點A(0,-b)和B(a,0)的直線與原點的距離為

(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題滿分12分)
中心在原點,焦點在x軸上的橢圓,率心率,此橢圓與直線交于A、B兩點,且OA⊥OB(其中O為坐標原點).
(1)求橢圓方程;
(2)若M是橢圓上任意一點,、為橢圓的兩個焦點,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的方程為,斜率為1的直線與橢圓交于兩點.
(Ⅰ)若橢圓的離心率,直線過點,且,求橢圓的方程;
(Ⅱ)直線過橢圓的右焦點F,設向量,若點在橢圓上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的右焦點,直線軸的交點為A,在橢圓上存在點P滿足線段AP的垂直平分線過點,則橢圓離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
已知橢圓的離心率為,過坐標原點且斜率為的直線相交于、
⑴求、的值;
⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓上的一點P,到橢圓一個焦點的距離為3,則P到另一焦點距離為  (  )
A.2 B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以橢圓的中心為頂點,左準線為準線的拋物線方程是              .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程表示焦點在y軸上的橢圓,則k的取值范圍是  (   )
A.B.(0,2)C.(1,+∞)D.(0,1)

查看答案和解析>>

同步練習冊答案