精英家教網 > 高中數學 > 題目詳情
設F1和F2為雙曲線-=1(a>0,b>0)的兩個焦點,若F1,F2,P(0,2b)是正三角形的三個頂點,則雙曲線的離心率為( )
A.
B.2
C.
D.3
【答案】分析:=tan60°=⇒4b2=3c2⇒4(c2-a2)=3c2⇒c2=4a2=4⇒e=2.
解答:解:如圖,∵=tan60°,
=,
∴4b2=3c2,
∴4(c2-a2)=3c2
∴c2=4a2,
=4,
∴e=2.
故選B.
點評:本題考查雙曲線的性質和應用,解題時要認真審題,注意公式的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設F1和F2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個焦點,若F1,F2,P(0,2b)是正三角形的三個頂點,則雙曲線的離心率為(  )
A、
3
2
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

設F1和F2為雙曲線
x2
4
-y2=1
的兩個焦點,點P在雙曲線上且滿足∠F1PF2=90°,則△F1PF2的面積是( 。
A、1
B、
5
2
C、2
D、
5

查看答案和解析>>

科目:高中數學 來源: 題型:

設F1和F2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩個焦點,若F1、F2、P(0,2b)是正三角形的三個頂點,則雙曲線的離心率為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

以正方形ABCD的相對頂點A、C為焦點的橢圓,恰好過正方形四邊的中點,則該橢圓的離心率為
10
-
2
2
10
-
2
2
;設F1和F2為雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個焦點,若F1,F2,P(0,2b)是正三角形的三個頂點,則雙曲線的離心率為
2
2
;經過拋物線y=
1
4
x2
的焦點作直線交拋物線于A(x1,y1),B(x2,y2)兩點,若y1+y2=5,則線段AB的長等于
7
7

查看答案和解析>>

科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練19練習卷(解析版) 題型:選擇題

F1F2為雙曲線-=1(a>0,b>0)的兩個焦點,F1、F2、P(0,2b)是正三角形的三個頂點,則雙曲線的離心率為(  )

(A) (B)2 (C) (D)3

 

查看答案和解析>>

同步練習冊答案