10.已知以點(diǎn)C(t,$\frac{2}{t}$)(t∈R且t≠0)為圓心的圓經(jīng)過(guò)原點(diǎn)O,且與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求證:△AOB的面積為定值.
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.
(3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

分析 (1)由題意可得:圓的方程為:$(x-t)^{2}+(y-\frac{2}{t})^{2}$=t2+$\frac{4}{{t}^{2}}$,化為:x2-2tx+y2-$\frac{4}{t}y$=0.求出與坐標(biāo)軸的交點(diǎn),即可對(duì)稱S△OAB
(2)由|OM|=|ON|,可得原點(diǎn)O在線段MN的垂直平分線上,設(shè)線段MN的中點(diǎn)為H,則C,H,O三點(diǎn)共線,
可得t,即可對(duì)稱圓C的方程.
(3)由(2)可知:圓心C(2,1),半徑r=$\sqrt{5}$,點(diǎn)B(0,2)關(guān)于直線x+y+2=0的對(duì)稱點(diǎn)為B′(-4,-2),則|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又點(diǎn)B′到圓上點(diǎn)Q的最短距離為|B′C|-r=$\sqrt{(-6)^{2}+(-3)^{2}}$-$\sqrt{5}$=2$\sqrt{5}$,進(jìn)而得出.

解答 (1)證明:由題意可得:圓的方程為:$(x-t)^{2}+(y-\frac{2}{t})^{2}$=t2+$\frac{4}{{t}^{2}}$,化為:x2-2tx+y2-$\frac{4}{t}y$=0.
與坐標(biāo)軸的交點(diǎn)分別為:A(2t,0),B$(0,\frac{4}{t})$.∴S△OAB=$\frac{1}{2}|2t|•|\frac{4}{t}|$=4,為定值.
(2)解:∵|OM|=|ON|,∴原點(diǎn)O在線段MN的垂直平分線上,設(shè)線段MN的中點(diǎn)為H,則C,H,O三點(diǎn)共線,
OC的斜率k=$\frac{\frac{2}{t}}{t}$=$\frac{2}{{t}^{2}}$,∴$\frac{2}{{t}^{2}}$×(-2)=-1,解得t=±2,可得圓心C(2,1),或(-2,-1).
∴圓C的方程為:(x-2)2+(y-1)2=5,或(x+2)2+(y+1)2=5.
(3)解:由(2)可知:圓心C(2,1),半徑r=$\sqrt{5}$,點(diǎn)B(0,2)關(guān)于直線x+y+2=0的對(duì)稱點(diǎn)為B′(-4,-2),則|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又點(diǎn)B′到圓上點(diǎn)Q的最短距離為|B′C|-r=$\sqrt{(-6)^{2}+(-3)^{2}}$-$\sqrt{5}$=2$\sqrt{5}$,
則|PB|+|PQ|的最小值為2$\sqrt{5}$.
直線B′C的方程為:y=$\frac{1}{2}$x,此時(shí)點(diǎn)P為直線B′C與直線l的交點(diǎn),
故所求的點(diǎn)P$(-\frac{4}{3},-\frac{2}{3})$.

點(diǎn)評(píng) 本題考查了直線 與圓相交問(wèn)題、圓的標(biāo)準(zhǔn)方程及其性質(zhì)、兩點(diǎn)之間的距離公式、對(duì)稱問(wèn)題,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E,F(xiàn)分別在A1B1,D1C1上,A1E=D1F=4.過(guò)點(diǎn)E,F(xiàn)的平面α與此長(zhǎng)方體的面相交,交線圍成一個(gè)正方形.
(Ⅰ)在圖中畫(huà)出這個(gè)正方形(保留畫(huà)圖痕跡,不用說(shuō)明畫(huà)法和理由)
(Ⅱ)求平面α把該長(zhǎng)方體分成的兩部分中較小部分的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知命題P:直線2x-y=0與雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)沒(méi)有公共點(diǎn),命題q:直線x+ny-2n=0與焦點(diǎn)在x軸上的橢圓$\frac{x^2}{16}+\frac{y^2}{m^2}=1({m>0})$恒有公共點(diǎn),若p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知點(diǎn)P(2,-1).
(1)若一條直線經(jīng)過(guò)點(diǎn)P,且原點(diǎn)到直線的距離為2,求該直線的一般式方程;
(2)求過(guò)點(diǎn)P且與原點(diǎn)距離最大的直線的一般式方程,并求出最大距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.有三個(gè)命題:
(1)“若x+y=0,則x,y互為相反數(shù)”的逆命題;
(2)“若a>b,則a2>b2”的逆否命題;
(3)“若x≤-3,則x2+x-6>0”的否命題.
其中真命題為(1)(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1時(shí)有極值0.
(1)求常數(shù) a,b的值;  
(2)求f(x)的單調(diào)區(qū)間.
(3)方程f(x)=c在區(qū)間[-4,0]上有三個(gè)不同的實(shí)根時(shí)實(shí)數(shù)c的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若命題“存在x∈R,x2-2x+2=m”為假命題,則實(shí)數(shù)m的取值范圍是m<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)$\overrightarrow a,\overrightarrow b,\overrightarrow c$為單位向量,$\overrightarrow a,\overrightarrow b$的夾角為60°,則$(\overrightarrow a+\overrightarrow b+\overrightarrow c)•\overrightarrow c$的最大值為1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知$\overrightarrow{a}$=(x,2),$\overrightarrow$=(-2,1),$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.$\sqrt{5}$B.$2\sqrt{5}$C.$\sqrt{10}$D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案