解法一:設(shè)符合題設(shè)的等比數(shù)列{an}中的連續(xù)三項(xiàng)為am,am+1,am+2,則:
am+1=amq,am+2=am+1q,(q為公比) 兩式相減,得q= 又am+1=am+(k-t)d,即am+1-am=(k-t)d 同理am+2-am+1=(p-k)d(d為公差),故q= ∴所求通項(xiàng)公式為:an=a1()n-1. 解法二:設(shè)等差數(shù)列為{bn},公差為d, 則 由題設(shè)知,bt,bk,bp是等比數(shù)列{an}中的連續(xù)三項(xiàng),故q= 利用等比定理,可得:
∴q=,an=a1()n-1. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
51006 |
2 |
51006 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com