在正四面體ABCD中,點Q在線段AD上運動,當
QB
QC
取得最小值時,點Q的位置位于( 。
分析:設(shè)
AQ
=t
AD
,則
QB
=-t
AD
+
AB
,
QC
=-t
AD
+
AC
,利用數(shù)量積公式,化簡,再配方,即可求得結(jié)論.
解答:解:設(shè)
AQ
=t
AD
,則
QB
=-t
AD
+
AB
QC
=-t
AD
+
AC

QB
QC
=(-t
AD
+
AB
)•(-t
AD
+
AC
)=t2
AD
2
-t(
AD
AC
+
AD
AB
)+
AB
AC

設(shè)|
AB
|=a,則
QB
QC
=a2[(t-
1
2
2+
1
4
]
當t=
1
2
時,
QB
QC
取得最小值,即點Q的位置位于AD的中點.
點評:本題考查向量的數(shù)量積運算,考查學(xué)生的計算能力,正確利用數(shù)量積公式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在正四面體ABCD中,E、F分別是BC、AD中點,則異面直線AE與CF所成的角是
 
.(用反三角值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有關(guān)正三角形的一個結(jié)論:“在正三角形ABC中,若D是BC的中點,G是三角形ABC內(nèi)切圓的圓心,則
AG
GD
=2”.若把該結(jié)論推廣到正四面體(所有棱長均相等的三棱錐),則有結(jié)論:“在正四面體ABCD中,若M是正三角形BCD的中心,O是在正四面體ABCD內(nèi)切球的球心,則
AO
OM
=
3
3
”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)使用類比推理得到如下結(jié)論:
(1)同一平面內(nèi),三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b,類比出:空間中,三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b;
(2)a,b∈R,a-b>0則a>b,類比出:a,b∈C,a-b>0則a>b;
(3)以點(0,0)為圓心,r為半徑的圓的方程是x2+y2=r2,類比出:以點(0,0,0)為球心,r為半徑的球的方程是x2+y2+z2=r2;
(4)正三角形ABC中,M是BC的中點,O是△ABC外接圓的圓心,則
AO
OM
=2
,類比出:在正四面體ABCD中,若M是△BCD的三邊中線的交點,O為四面體ABCD外接球的球心,則
AO
OM
=3

其中類比的結(jié)論正確的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四面體ABCD中,點E為棱AD的中點,則異面直線AB與CE所成角的大小為
arccos
3
6
arccos
3
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四面體ABCD中,E,F(xiàn)分別為BC,AD的中點,則異面直線AE與CF所成角的余弦值是
 

查看答案和解析>>

同步練習(xí)冊答案