9.若f(x)的定義域?yàn)閇-3,2],則函數(shù)y=f(-2x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.[-3,7]B.$[{-\frac{1}{2}\;,\;\;2}]$C.[-3,2]D.[-1,2]

分析 根據(jù)f(x)的定義域得出-3≤-2x+1≤2,求出x的取值范圍即可.

解答 解:f(x)的定義域?yàn)閇-3,2],
得-3≤-2x+1≤2,
即-4≤-2x≤1,
解得-$\frac{1}{2}$≤x≤2,
所以y=f(x)的定義域?yàn)閇-$\frac{1}{2}$,2].
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的定義域和應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)P為△ABC所在平面內(nèi)一點(diǎn),且$3\overrightarrow{PA}+3\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,則△PAC的面積與△ABC的面積之比為( 。
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=ln(\sqrt{1+{x^2}}-x)+4$,f(lg(log210))=5,則f(lg(lg2))=( 。
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,且1,an,Sn是等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2an,設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若$a={({\frac{1}{2}})^{0.3}}$,$b={({\frac{1}{2}})^{-2}}$,$c=lo{g}_{\frac{1}{2}}2$,則a,b,c大小關(guān)系為( 。
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知AB是過拋物線2x2=y的焦點(diǎn)的弦,若|AB|=4,則AB的中點(diǎn)的縱坐標(biāo)為$\frac{15}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)的圖象如圖,則它的一個(gè)可能的解析式為(  )
A.y=2$\sqrt{x}$B.y=4-$\frac{4}{x+1}$C.y=log3(x+1)D.y=$\root{3}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx-$\frac{a}{x}$.
(1)當(dāng)a=-3時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)f(x)在[1,e]上的最小值為$\frac{3}{2}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且αsinα>βsinβ,則下列關(guān)系式:①α>β; ②α<β; ③α+β>0; ④|α|>|β|; ⑤α2≤β2
其中正確的序號(hào)是④.

查看答案和解析>>

同步練習(xí)冊(cè)答案