如圖,已知拋物線
的焦點為F
過點
的直線交拋物線于A
,B
兩點,直線AF,BF分別與拋物線交于點M,N
(1)求
的值;
(2)記直線MN的斜率為
,直線AB的斜率為
證明:
為定值
試題分析:(1)把直線方程代入到拋物線方程中整理化簡,然后根據(jù)一元二次方程根與系數(shù)的關(guān)系可求;(2) 利用設(shè)點表示出斜率,根據(jù)根與系數(shù)關(guān)系代入化簡可求得定值
試題解析:(1)解:依題意,設(shè)直線AB的方程為
將其代入
,消去
,整理得
從而
5分
(2)證明:
設(shè)M
則
設(shè)直線AM的方程為
,將其代入
,消去
,
整理得
所以
同理可得
故
由(1)得
為定值 10分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)
是拋物線
上相異兩點,
到y(tǒng)軸的距離的積為
且
.
(1)求該拋物線的標準方程.
(2)過Q的直線與拋物線的另一交點為R,與
軸交點為T,且Q為線段RT的中點,試求弦PR長度的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線
上兩點
、
關(guān)于直線
對稱,且
,則
等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
與雙曲線
有相同的焦點F,點
是兩曲線的交點,且
軸,則
的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設(shè)拋物線C:
的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0, 2),則C的方程為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線的頂點在原點,焦點在
軸上,拋物線上的點
到焦點的距離為4,則
的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
雙曲線
與拋物線
相交于A,B兩點,公共弦AB恰好過它們的公共焦點F,則雙曲線C的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米建立適當?shù)钠矫嬷苯亲鴺讼,求拋物線方程.現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?
查看答案和解析>>