6.設a=log52,b=e${\;}^{-\frac{1}{2}}$,c=log3π,則( 。
A.a<c<bB.b<c<aC.a<b<cD.b<a<c

分析 利用對數(shù)函數(shù)的單調(diào)性與性質(zhì)以及指數(shù)函數(shù)的單調(diào)性與性質(zhì),推出a,b,c的范圍,即可比較大小,得到答案.

解答 解:∵0<log52<log5$\sqrt{5}$=$\frac{1}{2}$,即a∈(0,$\frac{1}{2}$);
1=e0>e${\;}^{-\frac{1}{2}}$=$\frac{1}{\sqrt{e}}$>$\frac{1}{\sqrt{4}}$=$\frac{1}{2}$,即b∈($\frac{1}{2}$,1),
log3π>c=log33=1,即c>1
∴a<b<c.
故選:C.

點評 本題考查不等式比較大小,掌握對數(shù)函數(shù)與指數(shù)函數(shù)的性質(zhì)是解決問題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.某種汽車購車時費用為14萬4千元,每年保險、養(yǎng)路、汽油費用9千元;汽車的維修費各年為:第一年2千元,第二年4千元,第三年6千元,依每年2千元的增量逐年增加,則這種汽車最多使用12年報廢最合算.(注:最合算即是使用多少年的年平均費用最少)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=xcosx+3(-1≤x≤1),設函數(shù)f(x)的最大值是M,最小值是N,則(  )
A.M+N=8B.M+N=6C.M-N=8D.M-N=6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{y≥3x-6}\\{x+y≥2}\end{array}\right.$,則目標函數(shù)z=2x+y的最小值為( 。
A.9B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)及其導數(shù)′(x),若存在x0,使得f(x)=f′(x),則稱x0是f(x)的一個“巧值點”,下列函數(shù)中,有“巧值點”的是( 。
①f(x)=x2,
②f(x)=e-x
③f(x)=lnx,
④f(x)=tanx,
⑤f(x)=x+$\frac{1}{x}$.
A.①③⑤B.①③④C.①②③④D.①②⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若函數(shù)f(x)=x-sinx對任意的θ∈(0,π),f(cos2θ)+f(msinθ-2)≤0恒成立,則m的最大值是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設全集U=R,A={x|3x(x-2)>1},B={x|y=lg(1-x)},則圖中陰影部分所表示的集合為(  )
A.{x|x<0}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+ax+b,g(x)=lnx.
(1)記F(x)=f(x)-g(x),求F(x)在[1,2]的最大值;
(2)記G(x)=$\frac{f(x)}{g(x)}$,令a=-4m,b=4m2(m∈R),當0<m<$\frac{1}{2}$時,若函數(shù)G(x)的3個極值點為x1,x2,x3(x1<x2<x3),
(ⅰ)求證:0<2x1<x2<1<x3;
(ⅱ)討論函數(shù)G(x)的單調(diào)區(qū)間(用x1,x2,x3表示單調(diào)區(qū)間).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}的首項為a1=1,且其前n項和Sn滿足Sn+1=Sn+4n+1,n∈N*
(1)求Sn的表達式,并令bn=$\frac{{S}_{n}}{n+p}$.求非零常數(shù)p的值,使得數(shù)列{bn}是等差數(shù)列;
(2)在(1)的條件下,設cn=$\frac{1}{_{n}_{n+1}}$.Tn是數(shù)列{cn}的前n項和,且Tn<m時對所有n∈N*都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案