Processing math: 21%
13.已知定義域為R的偶函數(shù)f(x),其導(dǎo)函數(shù)為f'(x),對任意x∈[0,+∞),均滿足:xf'(x)>-2f(x).若g(x)=x2f(x),則不等式g(2x)<g(1-x)的解集是(  )
A.(-∞,-1)B.13C.113D.113+

分析 由題意和乘積的導(dǎo)數(shù)可得偶函數(shù)g(x)=x2f(x)在R上單調(diào)遞增,可化原不等式為|2x|<|1-x,解之可得.

解答 解:由題意可得函數(shù)g(x)=x2f(x)為R上的偶函數(shù),
∵xf'(x)>-2f(x),x2f′(x)+2xf(x)>0,
∴g′(x)=(x2f(x))′=2xf(x)+x2f′(x)>0,
∴g(x)=x2f(x)在[0,+∞)R上單調(diào)遞增,
∵不等式g(2x)<g(1-x),
∴|2x|<|1-x|,
即(x+1)(3x-1)<0,
解得-1<x<13
故選:C

點評 本題考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,涉及函數(shù)的奇偶性,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖程序的輸出結(jié)果為(  )
A.(4,3)B.(7,7)C.(7,10)D.(7,11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若實數(shù)x,y滿足不等式組{xy+50x+y0x3則2x+4y的最小值是( �。�
A.6B.-6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知α∈(\frac{π}{2},π),且cosα=-\frac{5}{13},則\frac{tan(α+\frac{π}{2})}{cos(α+π)}=( �。�
A.\frac{12}{13}B.-\frac{12}{13}C.\frac{13}{12}D.-\frac{13}{12}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購進該商品10件,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得表:
日需求量n89101112
頻數(shù)101015105
①假設(shè)該店在這50天內(nèi)每天購進10件該商品,求這50天的日利潤(單位:元)的平均數(shù);
②若該店一天購進10件該商品,記“當(dāng)天的利潤在區(qū)間[400,550]”為事件A,求P(A)的估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=\frac{1-x}{e^x}
(1)求曲線y=f(x)在點(0,f(0))處的切線方程和函數(shù)f(x)的極值:
(2)若對任意x1,x2∈[a,+∞),都有f(x1)-f(x2)≥-\frac{1}{e^2}成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)y=sin(2x-\frac{π}{6})的圖象向左平移\frac{2π}{3}個單位,所得函數(shù)圖象的一個對稱中心為( �。�
A.(\frac{π}{12},0)B.(\frac{π}{6},0)C.(-\frac{π}{12},0)D.(\frac{π}{3},0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)數(shù)列{an}的前n項和為Sn,若S2=7,an+1=2Sn+1,n∈N*,則S5=202.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知sinα=\frac{4}{9}\sqrt{2},且α為鈍角,則cos\frac{α}{2}=\frac{1}{3}

查看答案和解析>>

同步練習(xí)冊答案