已知y=f(x)是定義在R上的奇函數(shù),若x<0時,f(x)=1+2x,求f(x)并畫出其圖象.
分析:根據(jù)已知中y=f(x)是定義在R上的奇函數(shù),若x<0時,f(x)=1+2x,我們易根據(jù)奇函數(shù)的性質(zhì),我們易求出函數(shù)的解析式,然后根據(jù)分段函數(shù)圖象分段畫的原則,即可得到函數(shù)的圖象.
解答:解:y=f(x)是定義在R上的奇函數(shù),
∴f(0)=0
當(dāng)x>0時,-x<0
則f(-x)=1+2-x=-f(x)
又∵x<0時,f(x)=1+2x
∴當(dāng)x>0時,f(x)=-1-2-x
∴f(x)=
1+2x,x<0
0,x=0
-1-2-x,x>0

其圖象如下圖所示:
精英家教網(wǎng)
點評:本題考查的知識點是指數(shù)函數(shù)的性質(zhì)及函數(shù)奇偶性的性質(zhì),其中根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合已知條件求出函數(shù)的解析式,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設(shè)O為坐標(biāo)原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+
5x
的定義域為(0,+∞).設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
(1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說明理由;
(2)設(shè)點O為坐標(biāo)原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
ax
的定義域為(0,+∞),a>0且當(dāng)x=1時取得最小值,設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問:PM•PN是否為定值?若是,則求出該定值,若不是,請說明理由;
(3)設(shè)O為坐標(biāo)原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點.
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點分別為A、B.
(ⅰ)證明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案