【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的極值;

(Ⅱ)若實數(shù)為整數(shù),且對任意的時,都有恒成立,求實數(shù)的最小值.

【答案】(Ⅰ)極大值為,無極小值;(Ⅱ)1.

【解析】

()由題意首先求得導函數(shù)的解析式,然后結合導函數(shù)的符號討論原函數(shù)的單調性,從而可確定函數(shù)的極值;

()結合題意分離參數(shù),然后構造新函數(shù),研究構造的函數(shù),結合零點存在定理找到隱零點的范圍,最后利用函數(shù)值的范圍即可確定整數(shù)m的最小值.

(),

,則;,則

上單調遞增,上單調遞減,

,無極小值.

(),即上恒成立,

上恒成立,

,則,

顯然,

,則,故上單調遞減

,

由零點定理得,使得,即

時,,則

時,.

上單調遞增,在上單調遞減

,

又由,則

∴由恒成立,且為整數(shù),可得的最小值為1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某射手每次射擊擊中目標的概率是,且各次射擊的結果互不影響.

(Ⅰ)假設這名射手射擊次,求有次連續(xù)擊中目標,另外次未擊中目標的概率;

(Ⅱ)假設這名射手射擊次,記隨機變量為射手擊中目標的次數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年的天貓“雙11”交易金額又創(chuàng)新高,達到2684億元,物流爆增.某機構為了了解網購者對收到快遞的滿意度進行調查,對某市5000名網購者發(fā)出滿意度調查評分表,收集并隨機抽取了200名網購者的調查評分(評分在70100分之間),其頻率分布直方圖如圖,評分在95分及以上確定為“非常滿意”.

1)求的值;

2)以樣本的頻率作概率,試估計本次調查的網購者中“非常滿意”的人數(shù);

3)按分層抽樣的方法,從評分在90分及以上的網購者中抽取6人,再從這6人中隨機地選取2人,求至少選到一個“非常滿意”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:

空調類

冰箱類

小家電類

其它類

營業(yè)收入占比

凈利潤占比

則下列判斷中不正確的是( )

A. 該公司2018年度冰箱類電器營銷虧損

B. 該公司2018年度小家電類電器營業(yè)收入和凈利潤相同

C. 該公司2018年度凈利潤主要由空調類電器銷售提供

D. 剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調類電器銷售凈利潤占比將會降低

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與拋物線y2x有一個相同的焦點,且該橢圓的離心率為.

(1)求橢圓的標準方程;

(2)過點P(0,1)的直線與該橢圓交于AB兩點,O為坐標原點,若,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是正方形, 平面, , , , 分別為 , 的中點.

1)求證: 平面;

2)求平面與平面所成銳二面角的大;

3)在線段上是否存在一點,使直線與直線所成的角為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為橢圓上任意一點,直線與圓交于兩點,點為橢圓的左焦點.

(Ⅰ)求橢圓的離心率及左焦點的坐標;

(Ⅱ)求證:直線與橢圓相切;

(Ⅲ)判斷是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年2月25日,第屆羅馬尼亞數(shù)學大師賽(簡稱)于羅馬尼亞首都布加勒斯特閉幕,最終成績揭曉,以色列選手排名第一,而中國隊無一人獲得金牌,最好成績是獲得銀牌的第名,總成績排名第.而在分量極重的國際數(shù)學奧林匹克()比賽中,過去拿冠軍拿到手軟的中國隊,也已經有連續(xù)年沒有拿到冠軍了.人們不禁要問“中國奧數(shù)究竟怎么了?”,一時間關于各級教育主管部門是否應該下達“禁奧令”成為社會熱點.某重點高中培優(yōu)班共人,現(xiàn)就這人“禁奧令”的態(tài)度進行問卷調查,得到如下的列聯(lián)表:

不應下“禁奧令”

應下“禁奧令”

合計

男生

5

女生

10

合計

50

若采用分層抽樣的方法從人中抽出人進行重點調查,知道其中認為不應下“禁奧令”的同學共有人.

(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為對下“禁奧令”的態(tài)度與性別有關?請說明你的理由;

(2)現(xiàn)從這人中抽出名男生、名女生,記此人中認為不應下“禁奧令”的人數(shù)為,求的分布列和數(shù)學期望.

參考公式與數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方體ABCDA1B1C1D1 的棱長為 2,且AC BD 交于點O,E 為棱DD1 中點,以A 為原點,建立空間直角坐標系Axyz,如圖所示.

(Ⅰ)求證:B1O平面EAC;

(Ⅱ)若點F EA 上且B1FAE,試求點F 的坐標;

(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

同步練習冊答案